CORN RESPONSE TO NITROGEN RATE AT THREE TOPOGRAPHIC POSITIONS WITHIN A TERRACED LANDFORM

M. Muhammad Aslam^a, G. Singh^{a*}, K. Nelson^a, and G. Kaur^b ^aDivision of Plant Science and Technology, College of Agriculture, Food and Natural Resources, University of Missouri

^bSchool of Natural Resources, College of Agriculture, Food and Natural Resources, University of Missouri

ABSTRACT

Nitrogen (N) application and topographic positions (TPs) are critical factors affecting corn (Zea mays L.) grain yield and quality, particularly in regions with diverse terrain like Northern Missouri. A field experiment was conducted in Northern Missouri in 2022 and 2023 to evaluate the effects of four nitrogen rates (0, 120, 200, and 280 lb N ac-1) and three TPs (shoulder, backslope, and footslope) on corn yield and guality. Corn grain yield increased with N application rates than non-treated check (NTC; 0 N), with significant variability across TPs and years. In 2022, corn yield at the shoulder position increased by 194, 190, and 168% at 120, 200, and 280 lb N ac-1 compared to the control. The backslope position showed the highest yield increase of 231%, particularly at 200 lb N ac-1, while the footslope position also exhibited significant increases of 178 and 179% for 200 and 280 lb N ac-1. In 2023, the shoulder position produced yield increase of 359, 427, and 423% at 120, 200, and 280 lb N ac-1, respectively, compared to NTC. The backslope position had the highest yield at 200 lb N ac-1 with a 448% increase, while the footslope position showed a 637% increase at 200 lb N ac-1 than the NTC. Protein levels significantly increased in 2022, particularly in the shoulder position reaching 8.64% and 9.10% at 200 and 280 lb N ac-1, respectively. The footslope position also showed an increased protein content of 8.45% with 280 lb N ac-1, compared to 6.05% with NTC, with similar but lower trends in 2023. Oil content was not significantly affected by TPs or N rates. These findings indicate the importance of site-specific N management strategies to enhance corn yield and guality in heterogeneous landscapes.

Keywords: Nitrogen rates, Topography, Yield quality, Corn, Sustainable agriculture