SPATIAL ANALYSIS OF YIELD-LIMITING FACTORS
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ABSTRACT

The spatial relationship between crop yields and soil and site parameters was modeled using several
methods. Yield maps estimated by projection pursuit regression and neural network analysis agreed
well with measured yields. These methods also allowed generation of response curves for estimated
yield as a function of each of the input parameters. These response curves were useful for
investigating the relationship between yields and individual soil and site parameters.

BACKGROUND

Understanding the functional relationship of crop yield to other spatial factors is a basic need
for successful site-specific crop management (SSCM). A first approximation to this relationship can
be obtained with conventional nutrient recommendation procedures (for example, Buchholz, 1983).
However, these recommendation procedures are generally based upon response data averaged over
a large geographic area, thus diluting the precision of the response relationship. To apply inputs with
the precision needed for SSCM, it could be more appropriate to develop individual response functions
for particular soils or soil associations, or perhaps even for a particular field, or for similar areas
within a field.

Another shortcoming of the current nutrient recommendation procedures is they necessarily
assume that all factors limiting yield are included in the recommendation process. When the
procedures are applied on a point-by-point basis within a field, there may be areas in which crop
growth and yield are limited by other factors, such as water availability. In these portions of the field,
the current recommendation procedures will not accurately relate crop yield to spatial soil and site
parameters.

The use of analysis techniques to predict yield from input parameters is of importance in
developing SSCM methods and recommendation procedures, but even more important is the ability
to use the techniques and models to understand yield response (or sensitivity) to changes in critical
factors. One approach to developing such an understanding of these relationships is through the
application of crop growth models (Hoogenboom et al., 1993). Another approach is based on
empirical analysis of multivariate spatial data. We previously used the empirical approach to study
the spatial relationship between soil properties and yields for a research field in central Missouri
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(Drummond et al., 1995). For this paper, we have expanded on the previous study and applied this
approach to additional datasets.

OBJECTIVES

The overall objective was to study the relationship between yields and soil properties (i.e.
nutrient availability, organic matter) and site properties (i.e. elevation) on a spatial basis. Specific
objectives were to: (1) develop and/or evaluate methods for predicting spatial crop yields, and (2) use
the model results to investigate the sensitivity of crop yield to variations in soil and site parameters.

MATERIALS AND METHODS

Data were collected on two fields, 90 acres and 70 acres in size, located near Centralia, in
central Missouri. The soils of the area are characterized as claypan soils. primarily of the Mexico-
Putnam association (fine, montmorillonitic, mesic Udollic Ochraqualfs). These soils are poorly
drained and have a restrictive, high-clay layer (the claypan) occurring below the topsoil. The two
fields were managed in a high yield goal, high input, minimum till corn-soybean rotation. Fertilizer
and chemical inputs were applied at a single rate.

Data were obtained for one field (Field 1) in 1993 (corn), 1994 (soybean), and 1995 (grain
sorghum). Grain sorghum was planted in this field in 1995, rather than corn, because an excessively
wet spring delayed planting until mid-June. Yield data for the other field (Field 2) were obtained only
in 1995 (soybean). Conditions for crop production were quite different between the three years. The
1993 growing season was characterized by heavy and frequent rains, with an annual precipitation of
62 in. Yield reductions were observed in lower portions of the landscape, due to excess water. The
1994 precipitation of 32 in. was only slightly below average, but less than 2 in. of rainfall was
received in July and August and crops experienced drought stress during much of the growing season.
In 1995, precipitation was 45 in., with an excessively wet planting season which again caused stand
problems and some yield reductions in the lower portion of the landscape.

Data Acquisition

Data obtained on the study fields included grain yield, elevation, and a number of soil
properties. Grain yield measurements were obtained using a full-size combine equipped with a
commercial yield sensing system and global positioning system (GPS) receiver, using data collection
and processing techniques described by Birrell et al. (1996). Detailed topographic data were
obtained on each field, using a total station surveying instrument and standard mapping procedures.

Based on our previous work (Sudduth et al., 1995), topsoil depth above the claypan was
estimated from soil conductivity. A mobile measurement system described by Kitchen et al. (1996)
was used to obtain root-zone soil conductivity data with a commercial electromagnetic induction
(EM) sensor. The actual depth of topsoil was measured at a set of randomly selected calibration
points and a regression between topsoil depth and the inverse of soil conductivity was developed
(Field 1: r* = 0.90, std. err. = 2.6 in.; Field 2: # = 0.89, std. err. = 3.7 in.). These regressions were
then applied to convert the EM data to topsoil depth.
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Field 1 was soil sampled on a 98 ft (30 m) grid in the spring of 1995. A hand soil probe was
used to collect soil cores to a depth of 8 in. Three soil cores obtained within a 3.3 ft (1 m) radius
of each sample position were combined, oven dried and analyzed by the University of Missouri Soil
and Plant Testing Services Laboratory. Soil properties measured were phosphorus, potassium, pH,
organic matter, calcium and magnesium. Cation exchange capacity (CEC) and magnesium saturation
were calculated according to standard procedures (Buchholz, 1983). Field 2 was soil sampled on a
82 ft (25 m) grid in the spring of 1996. Procedures were identical to those for Field 1, except that
8 cores were combined at each sample position.

Data Analysis

Yield and topsoil depth data were analyzed using geostatistics, and appropriate semivariogram
models and parameters were used to krige the data to a grid with a 33 ft (10 m) cell size. Data from
the grid cell centered closest to each soil sampling point was extracted and combined with the soil
sample data for analysis. If any data was missing for a grid cell, that cell was eliminated from the
analysis. The whole-field datasets ranged in size from 301 to 436 observations (Table 1).

Additional datasets were created for analysis by dividing each field into 5 sub-field areas on
the basis of elevation and topsoil depth. It was thought that the relationship of yield to soil and site
parameters might be more predictable within these areas than across the entire field. The two
relatively static parameters of elevation and topsoil depth were chosen because previous analysis
indicated that these had the most consistent impact on yields of all the measured parameters in the
dataset. To create the sub-field areas, each field was first divided into areas of low (<10 in.), medium,
and high (>20 in.) topsoil depth. The medium and high topsoil depth areas were then subdivided into
the lower 1/3 of the landscape and the higher 2/3 of the landscape (Figure 1). The sub-field datasets
ranged in size from 14 to 232 observations (Table 1).
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Figure 1. Sub-field areas classified by topsoil depth and elevation.
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Standard correlation and stepwise multiple linear regression (SMLR) analyses were completed
on each whole-field and sub-field dataset. Another analysis method used was projection pursuit
regression (PPR). This nonparametric regression method requires only a few general assumptions
about the shape of the regression surface, in contrast to the linearity constraints of SMLR (Friedman
and Stuetzle, 1981). In PPR, the regression response (yield in this case) is modeled as the sum of a
set of general (nonlinear) smooth functions of linear combinations of the independent (soil and site
property) variables. In the SMLR and PPR analyses, yield data for each field-year were regressed
against seven soil and site variables — phosphorus, potassium, pH, organic matter, topsoil depth,
CEC, and elevation. The other original variables were not used in this analysis to reduce problems
associated with colinearity. On these fields, we found that calcium, magnesium, and magnesium
saturation were highly correlated with CEC, and slope was correlated with topsoil depth.

A neural network analysis was also used to model the data. Neural networks are computing
systems composed of simple, highly interconnected processing units which respond to the sum of
inputs from all connections in accordance with an activation function (Hopfield and Tank, 1986). For
this study, a backpropagation network (BPN) with a sigmoid activation function was chosen. With
this nonlinear activation function, the leaming process for the network was nonlinear and
nonparametric. The BPN was designed with three layers; an input layer consisting of seven input
neurons, a hidden layer consisting of ten hidden neurons, and an output layer consisting of a single
output neuron. Each layer was fully connected with the following layer in a feed-forward
arrangement. Relatively few hidden neurons were used since this allowed training to be completed
in a reasonable time frame, and also because a smaller number of neurons tends to limit the ability of
the network to overfit the data. The dataset was randomly divided into training and testing sets for
cross-validation as a further means to guard against overfitting. The BPN was trained with each field-
year dataset in a separate session using the same seven input variables as were used in the SMLR and
PPR analyses.

RESULTS AND DISCUSSION

Yield patterns for Field 1 varied considerably from year to year. Visual comparison of yield
maps and soils maps from this field allowed us to associate some, but not all, yield patterns with soil
vanations. For example, the spatial pattern of 1994 yields showed some similarity to the pattern of
topsoil depth variation across the field (Drummond et al., 1995).

Whole-field statistical correlations of yields to soil and site parameters (Table 1) were difficult
to interpret in a way that yielded meaningful information. We concluded that these problems were
likely due to a complex and nonlinear functional relationship between yield and soil properties, which
was not well represented by the correlation statistic. Also, the form of the yield response function
was likely different from region to region within the field, due to different factors controlling the
expression of yield. In some cases, correlations calculated on a sub-field basis were more significant
than those calculated on a whole-field basis (Table 1). However, this was not always the case, and
it was apparent that linear correlation analysis was not the best approach to discerning the functional
relationships between yield and soil and site properties.
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Regression and Neural Network Analysis

SMLR analysis was applied to the yield and soil datasets, both for the entire field and for the
five sub-field areas defined above. The best significant models selected for each field included from
4 to 6 variables, with r* values ranging from 0.13 to 0.43 (Table 2). Elevation was the only model
variable common to all four datasets. Topsoil depth, organic matter, and phosphorus were also
significant variables in a majority of cases. Although the SMLR analysis gave some insight into the
relationships between yield and soil properties, the linearity constraints imposed by this model meant
that it could not accurately describe the data.

Table 2. Model statistics for estimation of yield data as a function of seven soil and
site parameters, using different analysis methods.

Field | Field 1 Field 1 Ficld 2
1993 1994 1995 1995
(corn) (sovbean) (sorghum) (sovbean)
Stepwisce multiple lincar regression (SMLR)
r 0.13 0.25 0.15 0.43
std. error, bw/A 10.3 3.7 8.9 6.1
Projcction pursuit regression (PPR)
r 051 0.68 0.56 0.77
std. error. bwA 7.6 2.4 6.4 38
Backpropagation ncural network (BPN) analysis
r 0.12 0.53 0.20 0.52
std. error. bw/A 10.2 2.8 8.4 5.6
Calibration datasct
number of data points 318 344 301 436
mean yicld. bwA 116.0 242 77.9 326

Nonparametric regression analysis by PPR provided significantly better estimates of yield than
did SMLR analysis using the same input datasets (Table 2). Estimated yield maps based on PPR
compared well with actual yield maps (Figure 2). The best PPR estimations were obtained for field-
years with well-defined, relatively large-scale yield patterns (Table 2, Figure 2). For example, the
areas of highest yield for Field 1 in 1994 were reproduced well, as were the areas of lowest yield for
Field 2 in 1995. The correspondence of PPR estimates and actual yields was weaker when the spatial
structure of actual yield was less well-defined, as was the case for Field 1 in 1993 and 1995.

The BPN approach also showed promise for estimating yields (Table 2). Predicted yield maps
were similar to actual yield maps, and to the maps predicted by PPR for Field 1 in 1994 and Field 2
in 1995 (Figure 2). The BPN maps reproduced the same major features as did the PPR maps,
although at a lower level of accuracy. In general, the BPN-derived maps showed less [ocalized
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variation in yield than those created with PPR. Yields estimated by BPN for Field 1 in 1993 and 1995
were less accurate. Some improvement in BPN yield estimates might be possible with additional
refinement of network training parameters and procedures.
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Figure 2. Measured, PPR predicted. and BPN predicted soybean yields for Field 1
in 1994 (top) and Field 2 in 1995 (bottom).

Yield Response Curves

The response of the PPR and BPN yield estimates to variations in the input parameters was
investigated on a point-by-point basis. Sensitivity analyses were conducted by holding all but one of
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the model input parameters ccnstant and varying the other parameter from a minimum to a maximum
value. All response curves for each sub-field area were then combined into a mean response curve
for that area. For generation of the response curves, all variables were normalized to a field-year
mean of zero and unity standard deviation. This facilitated comparison of yield responses to the
different soil and site parameters.

Response curves generated by the PPR and BPN analyses were similar overall. For example,
the general response to elevation for the 1995 Field 2 yield data was positive for both methods
(Figure 3). For this and most other parameters, the PPR curves exhibited more local variation than
did the BPN curves. Since r* values for the PPR analyses were higher than those for the BPN (Table
2). this may reflect better modeling of actual trends in the data. On the other hand, further
investigation of the results is needed to be sure that the PPR analysis is not overfitting the data.

Normalized Yield
Normalized Yield

-3 -2 -1 0 1 2 -3 -2 -1 0 1 2
Normalized Elevation Normalized Elevation

Figure 3. Comparison of PPR-estimated (left) and BPN-estimated (right) soybean
yield responses to elevation for Field 2 in 1995,

The PPR response curves appeared to successfully model major yield-limiting factors, as
shown by 1995 data from Field 2. For example, higher soybean yields were related to increases in
elevation within the field (Figure 3), with the strongest response found in the sub-field areas of lower
elevation. This trend was caused by the excess rainfall in the spring of 1995, which caused significant
problems with crop stands in the low-lying areas of the field. Yield decreases indicated at the highest
elevations were likely caused by the presence of a tree line which reduced yield in that area.

Yield response to topsoil depth was large and positive in the low and medium topsoil areas
of the field (Figure 4). The response was negative in the high topsoil areas because the locations of
greater topsoil accumulation were generally the same locations where standing water reduced crop
stand early in the season. Yield response to higher levels of phosphorus (Figure 4), potassium, and
lime were generally negative for this field-year. Most areas of the field were sufficient in these
nutrients, and the negative relationship may have been due to mining of nutrients in the more
productive areas of the field.
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Differences could be observed when comparing the 1995 soybean response curves for Field
2 (Figures 3 and 4) to the 1994 soybean response curves for Field 1 (Figure 5). For example, in low-
elevation areas the response of soybean yield to changes in elevation was negative for 1994, but
positive for 1995. Since crop growth was water-limited in 1994, the run-on areas at low elevation
were at an advantage; while in 1995 similar run-on areas had crop growth limited by excess water.
The phosphorus response was also different between the two field-years, with a positive response to
higher P observed in the lower landscape areas during 1994. Soil test P levels were lower on Field
1, and significant areas of the field were within the responsive range. The low- elevation portions of

the field showed greater response. since crop growth was not limited by low water availability in
those areas.

Normalized Yield
A Y
Normalized Yield

High Elev

2 1 0 1 2 3 Y2 1 o 1 2 3
Normalized Topsoil Depth Normalized Phosphorus

Figure 4. PPR-estimated soybean yield responses to topsoil depth (left) and soil test
phosphorus (right) for Field 2 in 1995,
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Figure 5. PPR-estimated soybean yield responses to elevation (left) and soil test
phosphorus (right) for Field 1 in 1994,
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CONCLUSIONS

The process of understanding yield variability was made difficult by the number of inter-
related factors that affect yield. Correlation analysis was not particularly useful in understanding yield
_van'ability, due to complex nonlinear relationships between yield-limiting factors. Dividing the field
Into smaller sub-field areas based upon topsoil depth and elevation did not measurably improve the
ability of this method to explain yield variability, but other methods of sub-field classification could
be investigated in hopes of finding regions that respond homogeneously to input factors. Stepwise
multiple linear regression was not able to accurately model yields. As with standard correlation, this
was likely due to linearity constraints.

Prediction capabilities were highest for the nonlinear, nonparametric methods. Yield response
curves developed with these methods agreed in general with our observations of yield-limiting
behavior on these fields. These response curves will be useful for studying the interactions between
multiple critical factors and crop yields. The fact that similar predictions and response curves were
obtained from two dissimilar methods (PPR and BPN) provides some degree of confidence that the
methods are modeling the association between yield patterns and soil properties in a reasonable
manner. Further study and refinement of both methods is needed, to optimize their use for yield
response investigation.
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