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ABSTRACT 

The spatial relationship between crop yields and soil and site parameters was modeled using several 
methods. Yield maps estimated by projection pursuit regression and neural network analysis agreed 
well with measured yields. These methods also allowed generation of response curves for estimated 
yield as a function of each of the input parameters. These response curves were useful for 
investigating the relationship between yields and individual soil and site parameters. 

BACKGROUND 

Understanding the functional relationship of crop yield to other spatial factors is a basic need 
for successful site-specific crop management (SSCM). A first approximation to this relationship can 
be obtained with conventional nutrient recommendation procedures (for example, Buchholz, 1983). 
However, these recommendation procedures are generally based upon response data averaged over 
a large geographic area, thus diluting the precision of the response relationship. To apply inputs with 
the precision needed for SSCM, it could be more appropriate to develop individual response functions 
for particular soils or soil associations, or perhaps even for a particular field, or for similar areas 
within a field. 

Another shortcoming of the current nutrient recom~nendation procedures is they necessarily 
assume that all factors limiting yield are included in the recommendation process. When the 
procedures are applied on a point-by-point basis within a field, there may be areas in which crop 
growth and yield are limited by other factors, such as water availability. In these portions of the field, 
the current recommendation procedures will not accurately relate crop yield to spatial soil and site 
parameters. 

The use of analysis techniques to predict yield from input parameters is of importance in 
developing SSCM methods and recommendation procedures, but even more important is the ability 
to use the techniques and models to understand yield response (or sensitivity) to changes in critical 
factors. One approach to developing such an understanding of these relationships is through the 
application of crop growth models (Hoogenboorn et al., 1993). Another approach is based on 
empirical analysis of multivariate spatial data. We previously used the empirical approach to study 
the spatial relationship between soil properties and yields for a research field in central Missouri 
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(Drummond et at., 1995). For this paper, we have expanded on the previous study and applied this 
approach to additional datasets. 

OBJECTIVES 

The overall objective was to study the relationship between yields and soil properties (i.e. 
nutrient availability, organic matter) and site properties (i.e. elevation) on a spatial basis. Specific 
objectives were to: (1)  develop andlor evaluate methods for predicting spatial crop yields, and (2) use 
the model results to investigate the sensitivity of crop yield to variations in soil and site parameters. 

RIATERIALS AND METHODS 

Data were collected on two fields, 90 acres and 70 acres in size, located near Centralia, in 
central Missouri. The soils of the area are characterized as claypan soils, primarily of the Mexico- 
Putnam association (fine, montmorillonitic, mesic Udollic Ochraqualfs). These soils are poorly 
drained and have a restrictive, high-clay layer (the claypan) occurring below the topsoil. The two 
fields were managed in a high yield goal, high input, minimum till corn-soybean rotation. Fertilizer 
and chemical inputs were applied at a single rate. 

Data were obtained for one field (Field 1) in 1993 (corn), 1994 (soybean), and 1995 (grain 
sorshum). Grain sorghum was planted in this field in 1995, rather than corn, because an excessively 
wet spring delayed planting until mid-June. Yield data for the other field (Field 2) were obtained only 
in 1995 (soybean). Conditions for crop production were quite different between the three years. The 
1993 growing season was characterized by heavy and frequent rains, with an annual precipitation of 
62 in. Yield reductions were observed in lower portions of the landscape, due to excess water. The 
1994 precipitation of 32 in. was only slightly below average, but less than 2 in. of rainfall was 
received in July and August and crops experienced drought stress during much of the growing season. 
In 1995, precipitation was 45 in., with an excessively wet planting season which again caused stand 
problems and some yield reductions in the lower portion of the landscape. 

Data Acquisition 

Data obtained on the study fields included grain yield, elevation, and a number of soil 
properties. Grain yield measurements were obtained using a fill-size combine equipped with a 
commercial yield sensing system and global positioning system (GPS) receiver, using data collection 
and processing techniques described by Birrell et al. (1996). Detailed topographic data were 
obtained on each field, using a total station surveying instrument and standard mapping procedures. 

Based on our previous work (Sudduth et al., 1995), topsoil depth above the claypan was 
estimated from soil conductivity. A nlobile measurement system described by Kitchen et al. (1996) 
was used to obtain root-zone soil conductivity data with a commercial electromagnetic induction 
(EM) sensor. The actual depth of topsoil was measured at a set of randomly selected calibration 
points and a regression between topsoil depth and the inverse of soil conductivity was developed 
(Field 1: r' = 0.90. std. err. = 2.6 in.; Field 2: ? = 0.89, std. err. = 3.7 in.). These regressions were 
then applied to convert the EM data to topsoil depth. 



Field 1 was soil sampled on a 98 fi (30 ni) grid in the spring of 1995. A hand soil probe was 
used to collect soil cores to a depth of 8 in. Three soil cores obtained within a 3.3 ft (1 m) radius 
of each sample position were combined, oven dried and analyzed by the University of Missouri Soil 
and Plant Testing Services Laboratory. Soil properties measured were phosphorus, potassium, pH, 
organic matter, calcium and magnesium. Cation exchange capacity (CEC) and magnesium saturation 
were calculated according to standard procedures (Buchholz, 1983). Field 2 was soil sampled on a 
82 f l (25 m) grid in the spring of 1996. Procedures were identical to those for Field 1, except that 
8 cores were combined at each sample position. 

Data Annlysis 

Yield and topsoil depth data were analyzed using geostatistics. and appropriate semivariogram 
models and parameters were used to krige the data to a grid with a 33 ft (10 m) cell size. Data from 
the grid cell centered closest to each soil sampling point was extracted and combined with the soil 
sample data for analysis. If any data was missing for a grid cell, that cell was eliminated from the 
analysis. The whole-field datasets ranged in size from 301 to 436 observations (Table 1). 

Additional datasets were created for analysis by dividing each field into 5 sub-field areas on 
the basis of elevation and topsoil depth. It was thought that the relationship of yield to soil and site 
parameters might be more predictable within these areas than across the entire field. The two 
relatively static parameters of elevation and topsoil depth were chosen because previous analysis 
indicated that these had the most consistent impact on yields of all the measured parameters in the 
dataset. To create the sub-field areas, each field was first divided into areas of low (€1 0 in.), medium, 
and high (>20 in.) topsoil depth. The medium and high topsoil depth areas were then subdivided into 
the lower 1/3 of the landscape and the higher 213 of the landscape (Figure 1). The sub-field datasets 
ranged in size from 14 to 232 observations (Table 1). 

Figure 1. Sub-field areas classified by topsoil depth and elevation. 



Table 1. Correlations between yields and soil and site properties for whole-field and sub-field areas. 

Ficldf Arca # P I< pH Organic CEC Ca Mg Mg Topsoil Elevation Slopc Curvature 
Year Obs 

Field1 all 3 1 8 
1993 lt I6 

nitlc 67 
htlc 43 
nitlic 170 
hthc 22 

Field1 all 344 
1994 11 17 

nitlc 71 
htlc 47 
mthc 187 
htlic 22 

Ficldl all 301 
1995 11 14 

nitlc 72 
htlc 40 
mthc 161 
hthc 21 

Field2 all 436 
1995 11 68 

mtlc 81 
htlc 26 
nithc 232 
hthc 29 

Matter Sat. Dcpth 
-0.0 1 0.07 0.06 -0.l5* -0.04 -0.17* -0.I6* -0.13* -0.01 -0.05 
-0.74* 0.64* -0.27 -0.60* -0.20 -0.45* -0.21 -0.28 0.48* -0.06 
0.1 1 0.44* 0.3 l* -0.25* 0.07 -0.18 -0.05 0.06 0.14 -0.22* 
-0.10 -0.26* 0.08 0.07 -0.18 -0.12 -0.2 1 0.15 0.04 0.08 
-0.03 -0.01 -0.02 -0.16' -0.12 -0.21' -0.25* -0. I0 -0.14* -0.04 
-0.10 -0.3 1 -0.22 -0.3 1 -0.33 -0.67* -0.77* -0.4 I* -0.47* -0.33 
-0.05 0.13* -0.14* -0.16* -0.08 -0.12* -0. lo* 0.39* -0.22* -0. lo* 
0.41 * -0.57* 0.03 0.13 -0.25 -0.08 -0.27 0.13 -0.24 -0.10 
0.31* 0.27* 0.14 -0.06 0.00 0.07 0.23* 0.08 0.03 0.01 
-0.08 0.10 -0.10 0.12 0.27* 0.33* 0.43* 0.52* -0.65* -0.07 
0.03 0.33* -0.17* -0.25* -0.03 -0.21* -0.21* 0.07 -0.02 -0.22* 
-0.20 0.3 1 0.36* -0.34 0.02 -0.09 0.08 0.09 0.52* -0.40* 
-0.02 0.05 0.16' -0.06 -0.07 -0.05 0.0 I -0.03 0.26* -0.09 
-0.31 0.17 0. I6 -0.20 -0.18 -0.09 0.08 -0.03 0.08 -0.01 
-0.551 -0.04 -0.32* -0.44* -0.61* -0.36* -0.16 0.14 -0.03 -0.22* 
-0.38* -0.16 -0.1 1 -0.35* -0.62* -0.39* -0.27* -0.36* 0.34* 0.48* 
-0.05 0.03 0.18' 0.07 0.06 0.01 0.04 0.05 0.24* -0.10 
-0.44* -0.01 0.32 -0.1 l -0.12 -0.06 0.01 0.12 0.11 -0.10 
-0.37* -0. lo* -0.43* -0.48* -0.52* -0.44* -0.34* -0.09* 0.49* -0.08* 
-0.28* -0.12 -0.25* -0.42* -0.49* -0.35* -0.24* 0.27* 0.57* -0.25* 
-0.28* 0.06 -0.21* -0. l l -0.02 -0. 10 -0.01 -0.33* 0.48* 0.52* 
-0.42* 0.04 -0.21 -0.32 -0.27 -0.34* -0.28 -0.44* -0.21 -0.41* 
-0.05 -0.24* -0.09 -0.09 -0.24* -0.01 0.1 l 0.37* -0.02 0.05 
-0.76* -0.22 -0.56* - 0 6  -0.73* -0.61* -0.52* -0.62* -0.43* 0.27 

Area designations: It = lo\v topsoil dcpth: mtlc = medium topsoil, low elcvation: title = high topsoil. lo\v elevation: nitlie = mcdium topsoil. high clcvation; 
hthc=high topsoil. high elevation. Starred correlations arc significant at the 0.10 Icvcl. 



Standard correlation and stepwise nlultiple linear regression (SMLR) analyses were completed 
on each whole-field and sub-field dataset. Another analysis method used was projection pursuit 
regression (PPR). This nonparametric regression method requires only a few general assumptions 
about the shape ofthe regression surface, in contrast to the linearity constraints of SMLR (Friedman 
and Stuetzle, 1981). In PPR, the regression response (yield in this case) is modeled as the sum of a 
set of general (nonlinear) smooth functions of linear con~binations of the independent (soil and site 
property) variables. In the SMLR and PPR analyses, yield data for each field-year were regressed 
against seven soil and site variables - phosphorus, potassium, pH, organic matter, topsoil depth, 
CEC, and elevation. The other original variables were not used in this analysis to reduce problems 
associated with colinearity. On these fields, we found that calcium, magnesium, and magnesium 
saturation were highly correlated with CEC, and slope was correlated with topsoil depth. 

A neural network analysis was also used to model the data. Neural networks are computing 
systems composed of simple, highly interconnected processing units which respond to the sum of 
inputs from all connections in accordance with an activation hnction (Hopfield and Tank, 1986). For 
this study, a backpropagation network (BPN) with a sigmoid activation hnction was chosen. With 
this nonlinear activation function, the learning process for the network was nonlinear and 
nonparametric. The BPN was designed with three layers; an input layer consisting of seven input 
neurons, a hidden layer consisting of ten hidden neurons, and an output layer consisting of a single 
output neuron. Each layer was hUy connected with the following layer in a feed-forward 
arrangement. Relatively few hidden neurons were used since this allowed training to be completed 
in a reasonable time frame, and also because a smaller number of neurons tends to limit the ability of 
the network to overfit the data. The clataset was randomly divided into training and testing sets for 
cross-validation as a hrther means to guard against overfitting. The BPN was trained with each field- 
year dataset in a separate session using the same seven input variables as were used in the SMLR and 
PPR analyses. 

RESULTS AND DISCUSSION 

Yield patterns for Field 1 varied considerably from year to year. Visual comparison of yield 
maps and soils maps from this field allowed us to associate some, but not all, yield patterns with soil 
variations. For example, the spatial pattern of 1994 yields showed some similarity to the pattern of 
topsoil depth variation across the field (Dri~mmond et al., 1995). 

Whole-field statistical correlations of yields to soil and site parameters (Table 1) were difficult 
to interpret in a way that yielded meaningfill information. We concluded that these problems were 
likely due to a complex and nonlinear functional relationship between yield and soil properties, which 
was not well represented by the col-relation statistic. Also, the form of the yield response function 
was likely different from region to region within the field, due to different factors controlling the 
expression of yield. In some cases, correlations calculated on a sub-field basis were more significant 
than those calculated on a whole-field basis (Table 1). I-lowever, this was not always the case, and 
it was apparent that linear correlation analysis was not the best approach to discerning the functional 
relationships between yield and soil and site properties. 



Regression and Neural Network Analysis 

SMLR analysis was applied to the yield and soil datasets, both for the entire field and for the 
five sub-field areas defined above. The best significant models selected for each field included from 
4 to 6 variables, with ? values ranging from 0.13 to 0.43 (Table 2). Elevation was the only model 
variable conimon to all four datasets. Topsoil depth, organic matter, and phosphorus were also 
significant variables in a majority of cases. Although the SMLR analysis gave some insight into the 
relationships between yield and soil properties, the linearity constraints imposed by this model meant 
that it could not accurately describe the data. 

Table 2. Model statistics for estimation of yield data as a hnction of seven soil and 
site parameters, using different analysis methods. 

- -- - 

Field I Field I Field 1 Field 2 
1993 1994 1995 1995 

(corn) (so\,bean) (sorghum) (soybean) 
Stcpwisc mulliplc linear regression (SMLR) 

std, error. bu/A 

Pro-iection pursuit regression (PPR) 
i 
std. error. bu/A 

Backpropagation neural net\\-ork (BPN) analysis 
i 
std. error. bulA 

Calibration datasct 
number of data points 
mean yield. bu/A 

Nonpararnetric regression analysis by PPR provided significantly better estimates of yield than 
did SMLR analysis using the same input datasets (Table 2). Estimated yield maps based on PPR 
compared well with actual yield maps (Figure 2). The best PPR estimations were obtained for field- 
years with well-defined, relatively large-scale yield patterns (Table 2, Figure 2). For example, the 
areas of highest yield for Field 1 in 1994 were reproduced well, as were the areas of lowest yield for 
Field 2 in 1995. The correspondence of PPR estimates and actual yields was weaker when the spatial 
structure of actual yield was less well-defined, as was the case for Field 1 in 1993 and 1995. 

The BPN approach also showed promise for estimating yields (Table 2). Predicted yield maps 
were similar to ac t~~al  yield maps, and to the maps predicted by PPR for Field 1 in 1994 and Field 2 
in 1995 (Figure 2). The BPN maps reproduced the same major features as did the PPR maps, 
although at a lower level of accuracy. In general, the BPN-derived maps showed less localized 



variation in yield than those created with PPR. Yields estimated by BPN for Field 1 in 1993 and 1995 
were less accurate. Some improvement in BPN yield estimates might be possible with additional 
refinement of network training parameters and procedures. 

Actual Yield PPR Predicted Yield BPN Predicted Yield 

I 0 15 22 30 37 45 52 bvlA 
0 1.0 1.5 2.0 2.5 3.0 3.5 Mglha 

Figure 2. Measured, PPR predicted. and BPN predicted soybean yields for Field 1 
in 1994 (top) and Field 2 in 1995 (bottom). 

Yield Respor~se Curves 

The response of the PPR and BPN yield estimates to variations in the input parameters was 
investigated on a point-by-point basis. Sensitivity analyses were conducted by holding all but one of 



the model input parameters ccqstant and varying the other parameter from a minimum to a maximum 
value. All response curves for each sub-field area were then combined into a mean response curve 
for that area. For generation of the response curves, all variables were normalized to a field-year 
mean of zero and unity standard deviation. This facilitated comparison of yield responses to the 
different soil and site parameters. 

Response curves generated by the PPR and BPN analyses were similar overall. For example, 
the general response to elevation for the 1995 Field 2 yield data was positive for both methods 
(Figure 3). For this and most other parameters, the PPR curves exhibited more local variation than 
did the BPN curves. Since i valc~es for the PPR analyses were higher than those for the BPN (Table 
2). this may reflect better modeling of actual trends in the data. On the other hand, hrther 
investigation of the results is needed to be sure that the PPR analysis is not overfitting the data. 

. '  I 

-3 -2 -1 0 1 2 -3 -2 - 1 0 1 2 
Normalized Elevation Normalized Elevation 

Figure 3 .  Comparison of PPR-estimated (left) and BPN-estimated (right) soybean 
yield responses to elevation for Field 2 in 1995. 

The PPR response curves appeared to successhlly model major yield-limiting factors, as 
shown by 1995 data from Field 2. For example, higher soybean yields were related to increases in 
elevation within the field (Figure 3), with the strongest response found in the sub-field areas of lower 
elevation. This trend was caused by the excess rainfall in the spring of 1995, which caused significant 
problems with crop stands in the low-lying areas of the field. Yield decreases indicated at the highest 
elevations were likely caused by the presence of a tree line which reduced yield in that area. 

Yield response to topsoil depth was large and positive in the low and medium topsoil areas 
of the field (Figure 4). The response was negative in the high topsoil areas because the locations of 
yeater topsoil accunlulation were generally the same locations where standing water reduced crop 
stand early in the season. Yield response to higher levels of phosphorus (Figure 4), potassium, and 
lime were generally negative for this field-year. Most areas of the field were sufficient in these 
nutrients, and the negative relationship may have been due to mining of nutrients in the more 
productive areas of the field. 



Differences could be observed when comparing the 1995 soybean response curves for Field 
2 (Figures 3 and 4) to the 1994 soybean response curves for Field I (Figure 5). For example, in low- 
elevation areas the response of soybean yield to changes in elevation was negative for 1994, but 
positive for 1995. Since crop growth was water-limited in 1994, the run-on areas at low elevation 
were at an advantage; while in 1995 similar run-on areas had crop growth limited by excess water. 
The phosphorus response was also different between the two field-years, with a positive response to 
higher P observed in the lower landscape areas during 1994. Soil test P levels were lower on Field 
1, and sigdcant areas of the field were within the responsive range. The low- elevation portions of 
the field showed greater response. since crop growth was not limited by low water availability in 
those areas. 

- 1 0 1 2 3 
Normalized Topsoil Depth 

m 
-2-2 -1 0 1 2 3 

Normalized Phosphorus 

- . . - . . - 
Med T m l  

Hlgh flev 

aP5;,,~ 
H~gh flev 
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Figure 4. PPR-estimated soybean yield responses to topsoil depth (left) and soil test 
phosphorus (right) for Field 2 in 1995. 
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Figure 5. PPR-estimated soybean yield responses to elevation (left) and soil test 
phosphorus (right) for Field 1 in 1994. 



CONCLUSIONS 

The process of understanding yield variability was made difficult by the number of inter- 
related factors that affect yield. Correlation analysis was not particularly usehl in understanding yield 
variability. due to complex nonlinear relationships between yield-limiting factors. Dividing the field 
into smaller sub-field areas based upon topsoil depth and elevation did not measurably improve the 
ability of this method to explain yield variability, but other methods of sub-field classification could 
be investigated in hopes of finding regions that respond tio~nogeneously to input factors. Stepwise 
multiple linear regression was not able to accurately model yields. As with standard correlation, this 
was likely due to linearity constraints. 

Prediction capabilities were highest for the nonlinear, nonparametric methods. Yield response 
curves developed with these methods agreed in general with our observations of yield-limiting 
behavior on these fields. These response curves will be useful for studying the interactions between 
multiple critical factors and crop yields. The fact that similar predictions and response curves were 
obtained fiom two dissimilar methods (PPR and BPN) provides some degree of confidence that the 
methods are modeling the association between yield patterns and soil properties in a reasonable 
manner. Further study and refinement of both methods is needed, to optimize their use for yield 
response investigation. 
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