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Abstract 

Site-specific f m i n g  has provided an opportunity to collect large amounts of field data, 
but traditional agronomic yield response models have not been developed to exploit this 
mformation. This research presents a yield model that incorporates detailed site-specific field 
information (e.g., soil pH. soil test P, K, and N, fertilizer rates), providing improved fertilizer 
decision making. A quadratic yield response function and a modified asymptotic Mitscherlich 
function are compared for irrigated corn yield response to fertilizer N and P. Both functions fit 
the data well but result in largely different fertilizer recornnlendations. To improve fertilizer 
recommendation decisions, multi-variable yield response f ic t ions  must be consistent with 
agronomic theory. A modified Mitscherlich function was estimated using farm-level data for 
wheat in NW Kansas. Wheat yield appeared to respond to soil test P but not to fertilizer P. After 
establishing a framework within which fertilizer P can build up soil test P, a simulation was 
conducted on uniform versus site-specific fertilizer decisions. The total discounted value of 
fertilizer decisions on 7 future crops over 9 years was $4 acre-' to $8 acre-' higher for site-specific 
based decisions than for uniform-based decisions. 

Traditionally. farm-level fertilizer recommendations depend heavily upon crop response 
experiments in which spatial variability is severely minimized. Crop yield is often specified as a 
mathematical function of fertilizer quantities in order to interpolate and extrapolate from 
measured fertilizer quantity 1 crop yield relationships. Mathematical relationships. referred to as 
response orprodztction functions, have typically been simple functions, with only one and 
sometimes two explanatory variables. However, with the advent of site-specific farming there is 
an increased interest in understanding broader yield relationships. For example, site-specific 
fertilizer recommendations might be viewed as dependent on numerous factors other than soil 
fertility - factors whose impact directly on crop yield or indirectly on the fertilizer - yield 
relationship must be understood in order to better exploit this information. Furthermore, 
increased use of farm-level crop response data will mean less homogeneous experimental units 
and increased demand for information about factors other than the one(s) being measured and 
their impacts on crop yield. 

This paper examines a technique of using empirically measured crop yield and soil 
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fertility data to generate response functions, referred to here as yield m~de l ing .~  The general 
objective is to improve the ability of agronomic practitioners to exploit fm-level  infomlation 
for fertilizer decision models. More specifically, we especially focus on phosphorus, 
constructing response functions from two Kansas data sets. We will discuss empirical ( f m -  
level or controlled experiment) relationships in the context of agronomic, mathematical. and 
economic theory. This work should be considered exploratory, not definitive, because we are 
just beginning to use these types of yield response functions for developing fertilizer 
recommendations. 

Background for Response Functions 

Crop yield observed at location i at time I. depicted as y,, might be considered to be a 
general function of various explanatory variables, for example x and z, also observed at location i 
and time t :  

Y,, = f Fi, 3 z,() a 

Practical use of this model to improve fertilizer decisions, however, requires additional 
information about equation 1. Specifically, what aref: x, and z? Two modeling decisions must 
be made. First, which explanatory variables should be used in the model, and second, what is the 
mathematical relationship between x and z and crop yield y? Explanatory variables that have 
traditionally been considered, because they impact crop yield, include soil chemical properties 
(e-g., soil test N (STN), soil test P (STP), and soil pH), soil texture, soil organic matter, soil bulk 
density, etc. These same variables are appropriate for site-specific decision making with the 
caveat that the data be available at a suitable cost. 

In evaluating the most appropriate bct ional  form for equation 1 ,  two criteria should be 
considered. The functional form must have been reasonably accurate at predicting crop yields, 
and the form must be consistent with agronomic and economic theory. Capturing important 
underlying forces with selection of functional form is especially important to ensure a model's 
reliability into the future (Kastens and Brester. 1996). Depending only on historical curve fitting 
(selecting a high-ordered functional form that accurately predicts the past) does not typically 
result in a reliable yield model. A much simpler hc t ional  form, one that may do only a 
mediocre job at predicting the past but captures some reliable underlying causal force, is often 
desirable. Regardless. consistency with current theories is always critical in generating reliable 
models of reality. 

Once equation 1 is mathematically specified we can test how well it performs using 
historical data and ask questions regarding consistency with agronomic andlor economic theory. 
Consider this simple specification of equation 1, in which only two variables, N fertilizer (nf or 
fertN) and P fertilizer (pf or fertP) are considered: 

Yield modeling should not be conhsed with agronomy's crop growth modeling, which often depends on 
many mathematical equations to simulate different phases of plant growth. 



In equation 2 and other equations in this paper, upper-case letters represent constants and lower- 
case italicized letters or words represent variables. For example, if A, B,, and BZ, are 40,0.7, and 
1 .O, respectively, in a corn yield model, then equation 2 becomes: 

Using (3). 80 lbs of fertN and 30 pounds of fertP would be expected to produce 126 bushels per 
acre - because 126 = 40 + 0.7 * 80 + 1 * 30. 

How are the parameters (the upper-case constants) of equation 2 selected? Conceptually, 
they night come from known agronomic laws governing crop production. In practice, they are 
typically estimated using actual observations of crop yields associated with different levels of 
fertN and fertP. More specifically, the following equation is estimated (A, B,, and B, are 
assigned numerical values) by minimizing the sum of squared errors (Eei:).4 

Once the parameters in (4) are estimated, the errors can be computed, squared, and 
averaged to provide a measure of in-sample predictive accuracy. mean squared error (MSE). The 
RMSE (root mean squared error, or MSE':) can be directly compared with the standard deviation 
of crop yield (y,). If this standard deviation is close to the RMSE computed in an estimated yield 
model, the model would likely not predict yield any more accurately than merely using average 
yield as an estimate of expected yield everywhere. 

An estimated yield model can be used to predict yield out-of-sample, which means 
predicting yield for explanatory variable values that were not actually observed in the original 
data set (the one used to estimate the parameters). If there were only four different fertN levels 
in the data set that was used to derive the parameters in (3), for example O,30,60, and 90 lbs of 
N, then examining the model's yield prediction (assuming fertP is held fixed at some value) at 40 
N is an out-of-sample interpolation. And, predicting yield at 100 N is an out-of-sample 
extrapolation (because 100 is outside of the range of observed fertN values). 

using some observed data set to choose the parameter values in (4) such that they minimize the model 
RMSE (same parameter estimates as minimizing the sum of squared errors or the MSE) can be accomplished using 
solver routines in computer spreadsheets (in ExcelQ or Lotus 123", for example). The computer systematically tries 
alternative parameter values until it finds the ones that minimize RMSE. For many mathematical functions, such as 
that depicted by (4), the parameters are not directly or indirectly lnultiplied by other parameters. For such linear-in- 
parameters functions, finding the parameters that minimize RMSE is merely an analytical formula, rather than some 
iterative computer optimization process. That analytical formula is used in ordinary least squares regression (OLS), 
a technique also readily available in computer spreadsheets or other numerical analysis software packages. Either 
way, the goal is the same: find the parameter values which minimize in-sample RMSE. 



Two classes of questions are especially relevant to help determine if an estimated yield 
model is robust (will have comparable predictive accuracies both in- and out-of-sample). First. 
do the parameter estimates make sense agronomically, or are they too small or too large? 
Second, do certain model implications seem unreasonable even if parameter magnitudes appear 
reasonable? Consider equation 2 or 3. The change in yield for a 1 unit change in N 
(mathematically, the first-order partial derivative ofy  with respect to nf, or aylanj) is always 
expected to be B, (i.e.. 0.7). This might be a reasonable approximation for an interpolation but 
unlikely to hold true for extrapolations. Specifically, response to fertilizer likely diminishes at 
some point. Moreover, how would economically optimal fertN rates be determined? 
Conceptually, fertilizer should be added until the last unit returns just enough added value 
(through increased crop yield) to cover its cost. However, the model in (2) and (3) depicts a 
constant fertilizer responsc regardless of the fertilizer level, implying that, depending on fertilizer 
and crop prices, optimal fertilizer rates are either 0 or infinity. To find optimal fertilizer rates, 
derivatives of yield with respect to the fertilizer variables must diminish with increased fertilizer. 

Consider a quadratic version of equation 4 while ignoring the e,  term: 

Now, the marginal change in yield expected, due to a 1-unit change in N, is ayldttf= B, + 
3B3 *nf As long as Bl>O and B,<O, equation 5 will project diminishing returns to N. That is. 
yield will rise with increased N, but at a diminishing rate. Since either of the two first 
derivatives of (5) can be analytically computed, we can determine, for example, the fertP level 
that maximizes yield by setting ayldpf to 0 and analytically solving f o r p j  

2 ( 6 )  pf' = -- . 
2B4 

Profit maximizing fertP levels are determined by setting the first derivative equal to the input- 
output price ratio, R, which is the price of a pound of fertP divided by the price of a bushel of 
crop, here corn (R = 0.12 if fertP is $0.30 Ib-' and corn is $2.50 bu-I). Now, equation 6 is 
modified to provide the profit-maximizing level of fertP, pf ': 

R-B, 
(7) pf**=-. 

2B.l 

Maximurn and economically optimal (profit maximizing) yields can be determined by solving 
equation 5 with nf and pf values derived in equations 6 and 7. 

A potential problem inherent to equation 5 is that N and P responses are independent of 
each other: aylanf is not impacted by pf and vice versa. This can be remedied by including an 
interaction term, which is based on a variable created by multiplying nf times pJ 



With equation 8, the first derivative of yield with respect to fertP depends on both fertP and 
fertN: i3ylapf = BZ+ 2B4 *pf + B5 *nJ Typically, B, would be expected to be positive so that 
yield is more responsive to fertP at higher levels of fertN (the fertilizers are viewed as 
complementary). Yield- and profit-maximizing fertP levels comparable to those calculated in (6) 
and (7) now depend on fertN values: 

Assuming B>O, B,<O, and BpO, then yield and profit maximizing levels of fertP will be higher 
when fertN is increased. 

Equations 5-1 0 illustrate that the quadratic function is an easy functional form with which 
to work in extracting measures of interest. One feature of the quadratic function, however, is 
undesirable. As fertP and fertN levels in (5) are increased beyond pf and nf, model-predicted 
yields turn downward and this may not be appealing in a limiting factor framework. 

The limiting factor idea is based on Liebig's Law of the Minimum (1 855) which states: 
"The crops on a field diminish or increase in exact proportion to the diminution or increase of the 
mineral substances conveyed to it in manure. . . by the deficiency or absence of one necessary 
constituent, all the others being present, the soil is rendered barren for all those crops to the life 
of which that one constituent in indispensable." This is considered the weak link theory, which 
indicates that production inputs are generally complementary - increasing levels of one input 
will lead to yields that plateau, unless other inputs are simultaneously increased, causing the 
whole plateau to rise. The weak linklyield plateau framework for considering response functions 
does not allow for yields that are expected to turn downward with increasing input levels. 

To see why the quadratic functional form may be somewhat troubling consider figure 1, 
which shows a hypothetical yield response to a single input. Clearly, the response appears 
consistent with the yield plateau idea, with yields reaching a maximum of 100 then remaining 
constant for input rates greater than around 18. Figure 2 shows the results of fitting a quadratic 
function as well as an asymptotic function (cliscussed later) to the data. If we accept the 
quadratic function as a reliable generalization of the underlying causal relationship, management 
decisions would be different than those implied from figure 1. First, peak yields with the 
quadratic do not appear to be reached until an input rate of 36, which is double the 18 observed 
in figure 1. Second, the quadratic function depicts decreasing yields at input rates greater than 



36, but this does not seem to represent the data well.' 

Specific Considerations in Selecting the Functional Form 

Although determining the "true" functional form of a given relationship is impossible. 
consideration of certain functional form characteristics should help determine whether one 
fimction might capture agronomic and economic relationships better than other functions, and 
hence serve as a better predictor of yield when used in an out-of-sample framework. Ultimately, 
the goal is to select a response function to be used in guiding site-specific fertilizer decisions - 
in our example, phosphorus recommendations. We present several considerations that we 
believe are important in determining the "true" functional form of a relationship. 

The first consideration is the preference exhbited by agronomists for the plateau-type or 
asymptotic functions compared to quadratic functions. Recently, a number of agronomic 
research studies have used such asymptotic functions specifically for phosphorus (Obreza and 
Rhoads, 1988: Halvorson, 1989; McCollum, 1991; Cox, 1996; Randall, et al., 1997a; Randall. et 
al., 1997b). 

The second consideration is that the functional form should accommodate the weak link 
or limiting factor idea. One input factor should be allowed to impact the yield response 
associated with another factor. Additionally, one factor should never be allowed to fully 
compensate for the lack of another factor (see Bauder et al., 1997 regarding this issue with 
respect to STP and fertP). More simply, factors should generally be treated as complements 
rather than substitutes. For example, Halvorsen (1989) reports that ". . . N fertilization 
significantly improved the recovery of fertilizer P in the harvested grain." 

The third consideration is that some factors must be allowed to behave as substitutes. For 
example, soil test fertility and applied fertilizer are likely to behave as substitutes. Specifically 
with regard to phosphorus, Sharpley (1 986); Pothuluri, et al. (1 99 1): and Bauder et al., (1997) 
have each found that fertP recovery had an inverse relationship with immediately preceding (in 
time) residual STP values. Intuitively, applying one additional pound of fertP will increase crop 

Besides those limitations already noted, the quadratic can be difficult to implement in the face of 
numerous variable interactions. For example. allowing for each interaction. a 7-input model in the form of equation 
(8) would need 28 parameters for the interaction terms, 7 parameters for the linear variable terms, 7 parameters for 
the squared terms, and one intercept, for a total of 43 parameters to estimate. Although such a model could be 
uniquely estimated with as few as 43 observations of data, reliability of estimates would be questionable with that 
little information. Likely because of the ease of estimation using ordinary least squares regression, as well as the 
ease of calculating its padial derivatives, the quadratic is still a well-used response function in spite of all of its 
limitations. Nonetheless, it is important to gain experience with alternative hnctions precisely because functions 
other than the quadratic might become increasingly important as response functions are used in site-specific 
farming. Although the research here focuses on one principal alternative to the quadratic, the interested reader 
should examine Selected Functional Forms in Production Function Analysis (Griffin, et al.. 1987). The authors 
examine 20 different functional forms, considering that fknctions contain both maintained as well as testable 
hypotheses. 



yield more when STP is low than when it is high. 

The fourth consideration is to select a function that does not equate zero yield with a zero 
level of an input. The fifth consideration is that the function must be able to accommodate 
"bads," in which excessive input levels are expected to lead to reduced yields. The sixth 
consideration is that the function must acconlmodate special variables such as pH, for which 
maximum yield is not expected to occur at low or high values, but at some pH value in between. 
These functional form requirements are enumerated in table 1. 

The first point (Table 1) eliminates from consideration all but 4 of the 20 functional 
forms discussed by Griffin, et al. (1 987). One of the remaining four forms is eliminated because 
it does not allow for 0 input values (the function is undefined there). Another functional form is 
ruled out because it has parameter values directly raised to the power of variable values, which 
would contribute to substantial data scaling problems. Of the two remaining functions, the 
Resistance function and the Mitscherlich function, only the Mitscherlich is conlrnon in the 
agronomic literature. Furthermore, the Mitscherlich appears more mathematically 
straightforward than does the Resistance. Consequently, this research proceeds by selecting the 
Mitscherlich function as a starting point for an appropriate functional form.6 

The Mitscherlich Response Function 

Using a simple two-variable (N and P) response function as an example, the Mitscherlich 
specification listed in Griffin, et al. (1987) is: 

y,, = A * (1 - e  -4 4,) * - -B~PA,)  

Unfortunately, as specified, equation 1 1 still violates several of the principles listed in table 1. 
Specifically, principle 3 is violated because (I 1) only allows for complementary relationships. 
Principle 4 is violated because 0 input of any factor would imply 0 yield (because e0 = 1). 
Further, equation 1 1 does not accommodate principles 5 and 6. With several modifications to the 
Mitscherlich equation, we can accommodate these principles. 

The modification to accon~modate principle 4 is relatively easy, although at the expense 
of an added parameter for each explanatory variable (a G term for each): 

A quadratic plateau function, often used in the research reported above around the first point (plateau- 
type functions), but not considered by Griffin, et al. (1987), was also not considered here. Although it might have 
appeal in the case of single-variable response hnctions, it is not immediately clear how multiple variables might be 
most appropriately incorporated. At the least, in the case of several explanatory variables, the quadratic plateau 
would be subject to the same "curse of dimension" noted earlier about the quadratic -measuring all interactions of 
interest involves numerous parameter estimations. 



Now, when nf = 0, the parenthetical term goes to I -GI, instead of to 0, which implies expected 
yields will be >O. 

As given in (12). the M-function (a modified Mitscherlich function) treats variables as 
"goods." Increasing the level of one factor while holding the others constant will increase yield. 
A variable that needs to be treated as a "bad" must only have that variable's name in (12) 
replaced with a transformed variable that rises when the original variable falls. For example, if 
i ~ ,  happened to be a bad, it would merely need to be replaced with the term (K - nfl), where K is 
an arbitrary user-selected constant that is chosen to be large enough that any observed or 
extrapolated nA, of interest will not cause (K - nf;,) to become negative. This accommodates 
principle 5 in table 1 .' 

Variables like pH can be treated similarly to the modification needed for a "bad." 
Namely, the variable term merely needs to be transformed. Consider a variable. x, that is 
expected to behave like pH. This variable would enter the M-function in this fashion: 

The x,sD3 tern1 and xi, >D3 term are Boolean logic terms which assume the value 1 if true and 0 
if not true. D, is a parameter than can be predetermined (e.g., for pH it could be fixed at 6.5) or 
one that can be selected like any other parameter - in the squared error minimization framework. 
The user-selected constant, K,, must be chosen to be large enough to keep all transformed values 
positive. Consider an x variable that has the following ordered values: {3,4,5,6,7,8,9). Suppose 
K, is selected to be 7 and D, is selected or happens to be 6 in the parameter estimation process. 
Then, the x series is transformed into the following (using the curly bracketed specification 
shown to be multiplied by -B, in equation 13): {4,5,6,7,6,5,4). In the transformation, x values 
of 3 or  9 will both behave the same (as a 4). Similarly, a 4 and 8 will behave the same (as a 5), 
and so  on. This modification (equation 13) accommodates principle 6. 

Now, equation 13 must only be modified to accommodate principle 3, which allows some 
factors to behave as substitutes. All "goods" are automatically substitutes for any "bads" in the 
M-function. Consider two variables, x l ,  which is a good, and x2, which is a bad, and hence 
enters the M-function as values subtracted from some arbitrary constant. Ln this case, Gylaxl2-0, 
G'ylax2~0, and 8y lax l&2~0 .  Nowever, this is not the issue. The issue is accommodating two 
"goods" that behave as substitutes, i.e., being able to have aylaxlrO, aylax22-0, and 
a'ylaxlc?r2~0. That is. we would like the first partial derivatives for x l  and x2 to be positive and 
the cross partial derivatives to be negative. An example of this is fertP and STP. We would 
expect both variables to positively impact yield, yet they should behave as substitutes. Lower 
soil-test phosphorus levels should lead to larger phosphorus fertilizer responses. 

' Unfortunately, accommodating a "bad" in (12) is not as simple as allowing that B parameter to be 
negative (making -B positive). To do so would mean the G-including term could be greater than 1, implying a 
negative parenthetical term, and hence negative yield projections. 



To accommodate two "goods" that require a negative cross partial derivative we could 
create another variable. In the x l ,  x2 framework. the variable to be created is x1x2 = x l  *x2. 
Then, the newly created x1x2 would need to enter the model as a "bad" (be subtracted from some 
constant). Unfortunately the process is not completely straightforward. Inclusion of the x1x2 
variable in the underlying equation adds a new negative term in the first partial derivative 
equation (to what before was only a single positive term). If the negative term is large enough, it 
could ovenvhelm the positive one, causing the first partial to be negative, leading to unsupported 
and unexpected results - positive input changes would mean negative yield changes. One way 
to prevent this is within the computer solution routine. That is, as in-sample RMSE is being 
minimized, the partial derivatives can be calculated at each iteration, checked for expected signs 
(are they positive?), and a penalty added to the RMSE when the partials have the wrong signs in 
order to prevent a nonsensical answer. 

Response in Kansas Irrigated Corn 

The first data set evaluated was compiled by Alan Schlegel. agronomist-in-charge at the 
Kansas Statc University Southwest Research-Extension Center, Tribune. Imgated corn yields 
were matched to fertN (N) and fertP (P,O,) phosphorus fertilizer levels from 1992 through 1998 
with 5 replications each year involving 3 fertP levels (0,40, and 80 lbs acre-') and 6 N levels (0. 
40, 80, 120, 160, and 200 Ibs acre-'), for a total of 630 observations. Unfortunately, soil fertility 
information was absent from this data set, providing only fertilizer and yield information from 
which to build response hc t ions .  

Figure 3 illustrates yearly average corn yield for the 90 plots. That average yield in 1995 
is probably a negative outlier should be considered in a fertilizer response model designed to 
derive recommended fertilizer rates. We used these data to fit two different response functions, a 
Q (quadratic) and an M-function. The Q model was specified as 

where y ,  is corn yield, yr95 is a binary variable valued at 1 if the observation was from 1995 and 
0 otherwise, nf is nitrogen fertilizer (lbs N acre-'), pf is phosphorus fertilizer (lbs P,O, acre-'), i 
and t index plot and year, respectively, uppercase letters denote paranleters to be estimated, and 
e ,  is a model prediction error. The estimated model (using ordinary least squares regression) cvas 

y, = 47.4874 - 53.9399 yr95, + 0.7737 nf;, - 0.0026pj;, 
(1 5 )  

+ 1.5380 n d  - 0.01 63 px; + 0.0044 nf;,*pf;, , 

with R' = 0.84 and an in-sample RMSE of 19.93. All parameter estimates were highly 
statistically significant (different from 0). 

Figure 4 graphically depicts yield projections by fertN levels across 3 fertP rates (0,40. 
80) from the quadratic function specified in equation 15. Even though unobserved in the data, 
yield projections for fertN rates above 200 were considered to determine the sensitivity of the 



model's projections. Two questions immediately stand out in the figure. First, should the 
predictions of decreased yield with higher fertN rates, especially obvious in the 0 fertP line, be 
ignored - especially in light of figure 2, which had shown the quadratic function's strong 
tendency to turn downward even when the data do not? Second, would 40 Ibs of fertP actually 
be expected to yield more than 80 Ibs of fertP at fertN levels less than 1 OO? 

Because no information other than fertilizer and yields was available in the corn plot data, 
specifying an M-function was easy relative to the earlier discussion of the many modifications 
that might be needed to ensure a reasonable model. The M-model was specified as 

where the notation is the same as described for equation 14. Unlike (l4), where the parameters 
could be estimated analytically using ordinary least squares, the parameters in (16) are highly 
nonlinear and must be estimated numerically through an iterative process seeking to minimize 
the sum of the squared in-sample prediction errors (SSE).' The estimated M-model is 

with R2 = 0.85 and an in-sample RMSE of 18.99. In spite of estimating only 6 parameters rather 
than the 7 used in the Q-function, the fit (in-sample prediction accuracy) was still better with the 
M-function than with the Q-function (R2 was higher and RMSE lower). 

The first term in (17) shows that maximum corn yield expected in this framework is 
193.4 bu acre-'. The next term shows that, after adjusting for differences in yield due to fertilizer, 
yields in 1995 were 42% lower than maximum yield. Figure 5 illustrates model-predicted yield 
for different levels of fertilizer (setting yr95 = 0). Figure 5 should be contrasted with figure 4, its 
quadratic counterpart. One major difference is that the 80 lb fertP line coincides almost 
identically with the 40 Ib fertP line, indicating little to gain by applying more fertP than 40 lbs. 
At 0 and 40 fertP and high fertN rates (Figure 6) the Q projects much lower yields than does the 

' Minimizing SSE is the same as mininlizing the mean squared error (MSE) or the root mean squared 
errors (RMSE). Choosing parameter values to minimize SSE in a problem like (16) can often be handily 
accomplished in a computer spreadsheet using its solver routine. Each parameter is assigned a separate cell in the 
spreadsheet, given a "first guess" or starting value, and collectively called the "adjustable cells," which the computer 
will adjust in its attempt to minimize SSE. The adjustable cells are then incorporated into spreadsheet formulas that 
mimic the right hand side of (16), ultimately providing a prediction of yield for each observed combination of fertN 
and fertP. The predicted yields (630 for this data set) are then subtracted from the actual or observed yields to 
become the errors. which are squared and subsequently summed. The spreadsheet cell with that sum is the one the 
computer is told to minimize - subject to user-selected constraints. Here, A,, GI,  and G2 were restricted to be 
between 0 and I, while & B,, and B, constrained to be positive. We used a Lotus 123' spreadsheet to estimate the 
parameters in (16). which were very close to those estimated using a more sophisticated optimization software 
package, MatlabQ. Unlike with ordinary least squares, with nonlinear optimization the user is never sure that the 
computed minimum SSE is the true minimum. Thus, to improve the confidence level, the solution process should 
be completed several times, each time with different starting values for the parameters estimated (the adjustable 
cells). 



M-bc t ion .  But, at 80 fertP, across all fertN levels, the Q- and M-hct ions  predict similarly 
(Figure 7). 

Agronomically and economically optimal fertilizer rates and yields were calculated from 
the estimated functions. Table 2 condenses this information and provides model fit diagnostics. 
Although yield predictions are not largely different across the hnctions, recommended fertilizer 
rates certainly are. At 263 lbs, the M-function recolnmends sharply higher fertN rates than does 
the quadratic (200 Ibs.). But, at 40 lbs fertP, the M-function's fertP recommendation is less than 
the quadratic's at 72. Even with relatively good model fit in a "clean" data set for irrigated corn. 
fertilizer recommendations are not s t ra ight fo~ard .~  

Response in Kansas Non-irrigated Wheat Using Farm Level Data 

The second data set evaluated was comprised of field-specific measurements from 1994 
to 1999 for wheat production on a single farni in northwest Kansas (Rawlins County). Normal 
annual rainfall for Rawlins County is 2 1 inches. Soils are predominantly silt loams. The data set 
included the following number of records by year: 1994- 1 7, 1995- 17, 1996- 13, 1997-1 0, 1998- 
20, 1999-1 5. In addition to records of wheat yield and fertilizer quantity (lbs fertN and Ibs fertP 
as P20,), records included measures of pre-plant soil fertility (STN, STP as Bray P1 and STK as 
ppm K), organic matter, soil pH, percent sand, percent clay. and percent silt. As judged by the 
producer, expected yields without hail were assigned to field-years that were subject to 
substantial hail (because. in that area, hail typically falls near harvest, when most of the crop's 
nutrients should have been extracted from the soil). In addition, seven fields in 1995 had a 
substantial frost in May that caused those records to receive special treatment as a binary 
variable. To establish some familiarity with the non-irrigated wheat data, summary statistics 
across the 92 field-year records are presented in table 3. 

We would expect that, besides soil fertility inforn~ation, factors such as organic matter, 
pH, and soil particle size (%sand, %clay, %silt) rnight also be important for determining optimal 
fertilizer rates. Thus the model estimated with this data set was designed to incorporate these 
factors. In the model, soil pH was treated like the x variable in equation 13, where peak yields 
are expected to occur at pH (O<pH<m), rather than at m, like the typical M-finction term, or at 0, 
like a factor considered to be a "bad." Whether soil particle size variables tend to be yield 
enhancing or decreasing is not known apriori, hence these variables were also treated like pH. 

Pothuluri, et al. (1991); Randall, et al. (1997b); and Bauder, et al. (1997) each supports 
the following statement. Relatively speaking. at low levels of STP, changes in fertP are more 
important determinants of eventual crop yield than are changes in STP. On the other hand, when 
STP is high, changes in STP are more important determinants of crop yield than are changes in 

In a personal communication, Alan Schlegcl indicated that he was reluctant to recommend fertN levels 
outside the range of his experiment, suggesting that perhaps the fertN recommendation should be taken fiom the 
quadratic. He further indicated that fertP levels of 72 were high relative to typical producer fertP rates in the area, 
suggesting that perhaps the fertP recommendation should be taken from the M-function. 



fertP. This statement, along with the idea that a portion of fertP might be tied up in less-plant- 
soluble forms (Moore et al., 1957), supports the following idea. Phosphorus fertilizer placed in 
the soil this year is used in one of three ways: 1) by the plant in making crop production, 2) to 
build up a phosphorus bank or reserve that potentially can be used in future crop production, or 
3) by combining into unusable chemical compounds (at least as long as the soil is not allowed to 
be "mined out" of phosphorus). 

The preceding paragraph points to at least three modeling issues. First, although we 
expect yield response to fertP and to STP each to be positive, we expect the cross partial 
derivative to be negative, i.e., 8ylapf+ss0, where y,pJ;ps. are yield, P fertilizer. and P soil test 
respectively. That is, the response to fertP should diminish with increased STP. Second, we 
might desire to allow the relationship between fertilizer yield response and soil test yield 
response to differ substantially from low testing soils to high testing soils. Third. we need to be 
prepared for the eventuality that yield may show substantial response to STP but little response 
to fertP (as noted by Bauder et al., 1997). In that case we would need some estimation of how 
fertP is transformed to STP over time - in order to make today's fertilizer decisions in a way to 
maximize future profits from crop production. 

Chemically, we would expect 1 Ib of PzO, to equate to around 0.44 lb. of P or to roughly 
0.22 ppm in the top 0-6" of soil (assuming the top 6 inches is about 2 million lbs.). This means 
that. if P,O, converted perfectly to STP, every 110.22 = 4.5 lbs of PzO, applied above crop 
removal would increase STP by 1 ppm. Of course, fertilizer does not convert perfectly to STP, 
rather a portion gets tied up in less extractable forms. The actual rate of conversion expected is 
an empirical issue and depends on soil type and soil fertility among other factors. 

After making the necessary numerical transformations to compare research results (we 
converted one example using Mehlich I to Bray P1 by multiplying it by 1.25). we have observed 
in the literature a wide array of transformation rates between excess (above crop removal) PzO, 
fertilizer in lbs acre-' in one year to change in Bray PI pprn over the next year. Barber (1979), 
looking at soils fiom the Purdue Agronomy Farm, reports that "Total P [Bray Pl]  in the soil 
changed one pgfg for each 4.5 kg P h a  difference between P removed in cropping and P applied 
as fertilizer." That transformation rate translates to roughly 9 Ibs. of P2O5 fertilizer to I pprn 
change in STP. Peck, et al. (1971), in low-testing Illinois soils, noted repeatedly that ". . . 1 year 
after the application of P fertilizer the P- 1 test values were increased by approximately one- 
fourth the amount of P added." This translates roughly to 18 lbs. P,05 per 1 pprn increase in 
STP. McCollum's (1 991) look at North Carolina soils translated to a transformation rate of 14.5 
Ibs. PzO, to 1 ppm. Randall, et al. (1997b). in Minnesota glacial till soils, report transformation 
rates for different experiments and soils, ranging from about 26 to 33. They note that Schulte 
and Kelling (1991) found the low rate of only 9 lbs. of PzO, to raise STP by 1 pprn in Wisconsin 
soils. Finally, McCallister et al. (1987) report a transformation rate in Nebraska soils equivalent 
to 33 Ibs. of P,05 for a 1 pprn increase in STP. 

How do the preceding transformation rates compare to equivalent measures on the NW 
Kansas study farm? Using P removal rates of 0.6 lbs of P205 per bushel of wheat and 0.38 Ibs 
per bushel of corn, phosphorus removal was calculated for 89 field records over 1994- 1999 



where initial and ending STP were each available. The mean starting and ending STP's were 
15.93 and 15.37 ppm, respectively. On average, 10.96 less lbs of P20, were applied as fertilizer 
than were removed by crop. Using only these means, the transformation rate is 10.96/(15.93- 
15.37) = 19.6. On the other hand, the question might be asked, Which constant transformation 
rate, when used on each of the 89 field records, would have provided the most accurate 
prediction of change in STP (using RMSE as a criterion)? In that case the answer would be 10.1. 
Given the wide range reported in the literature and the wide range reported here. it seems 
reasonable to use a transformation rate of around 15 in research with this data set (average of 
19.6 and 10.1). 

With the groundwork in place, the yield response function estimated using the data from 
the NW Kansas farm was of the following M-function form (dropping the i and I indexing 
subscripts and the trailing error term to simplify the presentation):I0 

where y is wheat yield.j?osr is a binary variable valued at 1 if a late spring frost harmed the yield 
in that field and 0 otherwise, nfand pf are fertN (lbs acre-') and fertP (Ibs P2O5 acre"), 
respectively, ns andps are STN (lbs acre-') and STP (Bray Pl), respectively, ks is soil test K 
(ppm). om is soil test organic matter (Oh), %sand, %clay, and %silt are correspondillg measures 
of soil particle size. ph is soil test pH, and upper-case letters are parameters to be estimated (33 
total). 

Although the asymptotic "limiting factor" concept is generally embodied in equation 17. 
the equation is modified to accommodate each of the phosphorus response concerns discussed 
earlier. Notice in particular that the phosphorus terms (associated with G1, G,, and G,) have 
unique B parameter estimates depending upon whether STP is below or above 15 (49 of 92 

lo  No quadratic function was included for comparison because of the large number of interaction terms that 
would have been needed. In the top two lines of (17) the 15 in "pss 15" and "ps>ls" arbilrarily splits the STP data 
range at 15. The constants, 15000, 70, 70, 80, and 8.5, were selected to be sufficiently large that. during estimation 
or in simulations thereafter, the associated temls would be positive. 



observations had STPs 15). That allows the relationship between fertilizer response and soil test 
response to be different at low and high levels of STP. 

Equation 17 was estimated minimizing squared errors. resulting in an RMSE of 8.4 174 
and an R2 of 0.4218." Equation 18 presents the estimated equation. 

While equation 18 appears to be a substantially detailed equation, the goal was, using agronomic 
theory, to generate a reasonable response function that could be used to generate fertilizer 
recommendations for VRT (variable rate technologies) decision making. The model explains 
42% of the yield variability in the data (R' = 0.42), con~pared to the irrigated corn model's fit of 
0.85. Of course, it would be easy to improve the R2 by not requiring the model to conform as 
much to theory (e.g., not restrict first partial derivatives to be positive). The assumption is that a 
model that is more theoretically correct will provide better out-of-sample fit (better able to make 
applied VRT decisions) in spite of potentially poor in-sample fit. 

The leading term in equation 18 shows that the wheat yield maximum (goal?) for this 
data set is around 78 bu acre-'. That is, if everything measured here is optimal (yield-wise, not 
profit-wise). wheat yield is expected to be 78 bu acre-'. The second term projects a 48% drop in 
yields due to late spring frost. The very last term in the equation shows that a pH level of 6.8 is 
expected to maximize yield. 

" A genetic algorithm was coded within Matlab@ software in order to estimate ( 1  7). Genetic 
algorithms are robust optimization techniques that are mathematically simple but computationally 
intense. For a good introduction in this area readers should see Dorsey and Mayer ( 1  995). To ensure 
consistency with agronomic theory (described earlier). and that fertilizers and soil tests behave as 
substitutes rather than complements, yield responses for nitrogen and phosphorus fertilizer and soil tests 
were each restricted to be positive during the estimation process. 



The idea of limiting factors in crop production is a relatively easy concept to understand 
but often a hard one to measure or show - in part because every variable impacts every other 
one. In order to better understand, it is often necessary to hold most factors fixed while 
observing yield impacts associated with only one or two factors varying. Furthermore, the 
observed minimum, maximum, and range of some variable indicate the scope over which 
variable changes might be considered reasonable. Figure 8 shows the model-predicted yield 
response for each fertilizer-type variable over the entire range of that variable observed in the 
data (the ranges can be seen in table 3). For example, for fertN, the 0 on the x-axis corresponds 
to the data minimum (10.01, fiom table 3) and the 100 corresponds to the data maximum (83.7. 
also from table 3). Values in between are prorated accordingly (percentages of the data range 
added to the data minimum). All other variables are held fixed at their means. 

Figure 8 shows that two fertility variables have very little impact on yields, STN and 
fertP (both coincide and are horizontal). That is not to say that nitrogen and phosphorus are 
unimportant to wheat production but that their impacts show themselves principally through 
fertN and STP. In fact, as STP varies over its range (7 ppm - 35 ppm) yield changes by more 
than any of the variables varying over their respective ranges. The kink in the STP response at 
30% of the range. which happens to be at an STP level of 15.4 pprq is due to allowing yield's 
response to STP to behave differently at low levels of STP than at high levels (recall that the 
model switched parameters at 15 ppm STP). 

Figure 9 shows the impact of non-fertility variables on wheat yield. Somewhat 
unexpected is that yield appears to diminish in increased sand and silt but increase in the face of 
rising clay values. Perhaps the increased water holding capacity of more clay type soils is a 
benefit. Also surprising is that organic matter did not appear to have a significant impact on 
wheat yield: nor did pH, which is not too surprising since pH is not typically a problem in NW 
Kansas soils. 

Considering that STP seems to be the relevant phosphorus variable and assuming a 
linkage can be made between fertP and STP the question is, Which variables might help with 
VRT in phosphorus? Clearly the most important one in figure 8 is STP itself. That is, it would 
certainly be inlportant to have site-specific infonnation about STP. But, what about the other 
variables? Mow important are they? To get at that we might ask, How is the efficiency (turning 
phosphorus into yield) of STP impacted by changes in other variables? Figure 10 
shows those impacts (leaving out the impact of changes in STP itself). It might be argued that 
the range on the y-axis is not particularly large but that is an economic issue to be addressed 
shortly. Clearly, it should be more profitable to build up STP 1 ppm in low-silt areas than in 
high-silt areas, also in high-clay areas than in low-clay areas. The synergism or complementary 
nature of fertN and STP is also quite clear, with greater P efficiency at high levels of fertN. 

One potentially interesting model result is that yield appears to respond to STK in figure 
8 and P efficiency is enhanced by STK in figwe 10. K levels in NW Kansas are typically rated 
very high and no yield response is expected. Could it be that what the model is observing as 
changes in STK is actually a proxy for other changes. For example. the simple linear correlation 
between STP and STK in our data set is 0.56. Might that mean that K should be excluded in 



future renditions of the model? Such questions routinely arise and must be considered in 
assessing response function results. 

Profit Maximizing Phosphorus Fertilizer Decisions 

In the irrigated corn model discussed earlier, optimal fertilizer rates were easy to 
determine because nothing but fertilizer and relative prices impacted that decision. But, that 
model offered no help for making site-specific decisions - the same level of fertilizers would be 
recommended for all parts of the field. In the wheat model just discussed, optimal fertilizer rates 
depend on measures of all other variables in the model, potentially complicating the decision 
process. Furthermore, as noted. fertP had only marginal yield impacts while STP likely had 
economically important yield impacts. This means that assumptions about tuning fertP into STP 
are required to operationalize the process. 

Conceptually, if it pays to apply fertP today to enhance next year's and subsequent year's 
production. then agronomically there is little reason to delay putting on the full amount needed to 
"build the soil up" to the optimal STP level. That is, suppose that today's STP level is 15 ppm 
Bray P 1 and the long run economically optimal STP level is 25 ppm. Then, if it takes 15 Ibs of 
additional (above crop removal) P205 to increase STP by 1 ppm, 150 lbs. of P,O, should be 
applied this year - so that, beginning next year and following with every year thereafter. one can 
reap the benefits of the higher levels of STP. In this setting, the optimal fertP is reduced to a 
simple future discounting problem: the increased profit in each hture year due to increased yield 
due to increased STP is discounted back to the present (because future dollars are worth less than 
today's dollars) and maxinlized by selecting fertP rates this year. 

Unfortunately, a number of factors make the fertP decision more complicated than the 
simplistic "build STP to the long run optimum this year." As already discussed, STP is a 
dynamic variable, with its levels changing over time based on previous years' STP levels, crop 
yields, and fertP rates. Further, some fields or areas may have STP levels that are above the 
economically optimal levels. For those areas it would be more profitable to apply zero fertP - at 
least until STP levels declined. Consequently, fertP determination is a complex problem, with 
the decision maker conceptually choosing all future levels of fertP simultaneously. 

Because current fertP rates help determine future STP levels and thus future yields. there 
are a number of reasons that a farmer may choose to apply less than the profit-maximizing 
quantity of fertP in any particular year. A land rental arrangement might abruptly be ended - 
before all rewards to fertility improvement can be reaped. A heavy current investment in fertP 
might constrain investments in other, perhaps more profitable fanning decisions. The planned 
cropping system might change over time, changing the expected P-to-yield relationship. The 
price of fertP might be abnormally high today. The model on which the fertP recommendation is 
based might not be quite right and next year's model might generate different recommendations. 
Thus, even though the agronomic transfornlation of fertP to future STP might be difficult to 
explain. the actual decision making process might be even more difficult. In order to complete 
our economic analysis, we make some simplifying assumptions around the fam~ing practices of 
our study farm. 



1. Cropping pattern andflnancial discozcnting 

The study farm's cropping pattern is fallow-wheat-corn. Expenditures for corn fertilizer 
are made in the same year the corn is harvested. However, expenditures for wheat fertilizer are 
made in the fallow year (ahead of fall planting) but wheat crop sales are not made until the 
harvest year. Thus, wheat crop sales need to be discounted one year within the wheat crop 
analysis. Then, gross margins (crop sales less fertilizer expenditures) for future crops (corn or 
wheat) need to be discounted back to the current decision making period. Assumillg an interest 
or discount rate of i, the appropriate discount factor is d, where d = l/(l+i). If we are only 
interested in the upcoming wheat crop, at fertilizing time (say 1999) we would choose the 
fertilizer amount expected to maximize {d *EWS,OOO - WFC1999), where EWS,, and WFC1999 are 
expected wheat sales in 2000 and wheat fertilizer costs in 1999, respectively. If today's fertilizer 
decision also impacted the corn crop in 200 1 and the following wheat crop harvested in 2003, we 
would want to choose the current wheat and future corn and wheat fertilizer amounts which 
maximize {d * E WS,, - WFC,,) + d2 {ECS,,, - CFC2001 ) + &(d * EWS200, - WFC,,,) , where 
ECS and CFC are expected corn sales and corn fertilizer costs, respectively. 

Although the cropping system used on the study farm is fallow-wheat-corn, a suitable 
corn response function for the farm had not yet been generated at the time of this research. In a 
study such as this, which depends heavily on discounted future returns, it would be inappropriate 
to ignore one half of all future crops (the corn part). Consequently, to maintain our framework of 
two crops in three years, we use wheat results (fertilizer response, crop sales, fertilizer purchases) 
as a proxy for the corn crop. Thus, in our analysis of a 4-future-crop framework (besides the 
current wheat crop being planned for) we would choose all current and future fertilizer rates 
which maximize {d * EWS,, - WFC,,,) + d'{d * EWS2w2 - WFCzrnl ) + &{d *E Ws2rn3 - 
WFC2rn2) + 8 (d *EWS,oo5 - WFC,,) + d { d  *EWS2, - WFC2005). 

For this study we assume an interest rate of 9%, or 0.09, leading to a discount factor of 
d=0.9174. We assume the farmer's acceptance of financial risks associated with buildup of STP 
is captured by the time horizon he is willing to consider (e.g., an extremely risk averse producer 
would need to observe an immediate payback to fertilizer). Here, we consider a time horizon of 
9 years, encompassing 3 future corn crops (actually, their wheat proxies) and 3 future wheat 
crops after the wheat crop currently being planned for (a total of 7 crops). Thus, our simulations 
begin in the fallow year, when fertilizer is to be applied for the wheat crop that will be harvested 
the following year. To examine the sensitivity of our analyses to the time horizon we also 
consider a time horizon of 6 years, which allows for 2 future corn crops and 2 future wheat crops 
after the wheat crop currently being planned for (a total of 5 crops). 

2. Fertilizer P and STP buildup 

FertN and fertP, applied to wheat ahead of planting, affect the current wheat crop's yield 
in the manner specified in equation 18 - as do all current measures of other variables. 
Phosphorus removal, as P,05, for the current wheat crop is considered to be 0.6 lbs bu" of wheat. 
P,O, fertilizer amounts above or below removal will build up or decrease STP for the following 
year at the rate of 15 Ibs of excess P,O, equals 1 ppm of STP. 



3. Prices 

FertN is assumed to cost $0.15 lb-', fertP (PzO,) $0.30 Ib". and wheat is valued at $3.30 bu-' 
(corn prices are irrelevant because wheat is used as a proxy for corn). 

4. Data variability 

This study's response function was estimated using field-level data observations. 
I Iowever, the estimated model (equation 18) can be used to examine fertilizer management at 
different scales as well, for example site-specific grids. To gain some understanding of the 
returns to management and technology associated with using a response function to determine 
fertilizer rates. we consider three different simulations. 

The first simulation, referred to as farm mvruge fertilizer, merely assigns historical farm 
average fertilizer rates (53 Ib N acre-' and 21 Ib P,O, acre-': see table 3) to every field and for 
each of the 7 projected crops. Model-simulated results (yields, profits, etc.) establish a status quo 
baseline. The second simulation, optinlal uniform, chooses fertilizer rates for each future crop 
that maximize the discounted expected gross margin (wheat sales less fertilizer cost) for all 7 
future crops, using data set mean soil fertility measures. The same profit-maximizing rates of N 
and P fertilizer (14 values - one N and one P level for each of 7 future crops) are then assigned 
to each observation in the data set and model-simulated results summarized. The third 
simulation, optimal VRT, chooses the fertilizer rates for each future crop which maximize the 
discounted expected gross margin for all 7 future crops, using soil fertility measures unique to 
each observation in the data set (each observation in the data set has 14 optimally selected 
fertilizer values - one N and one P level for each of 7 future crops). The difference in the 
discounted gross margins for farm average fertilizer and optimal zutiform is an indication of the 
expected returns to using the response function and related agronomic assumptions about buildup 
of STP to help select uniform phosphorus fertilizer rates. The difference between optimal 
tutifornt and optimal VRT, is an indication of the expected returns to adopting site-specific 
technologies, namely variable rate fertilizer. 

For our NW Kansas study f'arm we completed the preceding simulation for two other data 
sets besides the Farm data set summarized in table 3. The Field #1 data set is comprised of 59 
2.5 acre grids from a single field that was sampled in 1998. The Field #2 data set is comprised of 
5 1 2.5 acre grids from a field sampled in 1999. Both fields, however, used the same response 
function as the Farm - the one estimated using the Faml data set. 

5. ProJit maximizat ion process 

For the simulations involving optimal fertilizer rates (optimal unifornz and optimal T'RT), 
we simultaneously selected all future fertN and fertP rates such that the 7-crop discounted gross 
margin was maximized. In all simulated optimal fertilizer selections, the value of the late spring 
frost variable was set to 0 (in order to plan for the "good" years when there is no late spring 
frost). 



The simulation results are presented in table 4. I'anels l a  and I b show information about 
the Farm data set, 2a and 2b cover Field #1, and 3a and 3b cover Field #2. N and P fertilizer 
rates each went up substantially in going from the baseline (fi7rrn avg fertilizer) to optinzal 
uniform in Panel la." Needless to say, average STP and wheat yield were also higher 
accordingly. Returns rose by $9.88 (differences in gross margin), suggesting there could be 
economic gains to using a response function approach such as the one used here to help make 
fertilizer decisions - even without making large moves towards site-specific techn~logies.'~ 
Interestingly, however, fertN, fertP, STP, and yield each drop when going from zmiform to VRT, 
yet returns rose by $4.71. indicating improved fertilizer placement. 

It should be noted that the $9.88 and $4.71 acre-' values just mentioned are not annual 
values, rather they are 7-crop totals, discounted to the present. In the Farm example just given 
(Panel la, where VRT might imply field-level rather than sub-field management), for VRT to be 
profitable over trrziforrn, the $4.71 acre-' would have to cover the added one-time cost of 
completing field-level soil sampling rather than farm composite soil san~pling (after the first 
year, fertilizer decisions could be based on crop removal and fertP rates rather than soil tests). 
Secondly. it would have to cover the added costs of making the necessary machinery adjustments 
etc. to apply different fertilizer rates to each field in each year. 

For a farm with ten 100-acre fields, the difference in soil sampling costs (at say $1 5 per 
sample) for farm-level vs. field-level is only $0.14 acre-' ((I 0 x 15 - 15)/1 OOO), leaving S4.57 
acre-' to cover machinery adjustments for 7 years. Iiowever, if the analysis in Panel la  can be 
extrapolated to a farm with ten 2.5-acre fields (as in site-specific fanning), the difference in soil 
sampling costs is $5.40 acre-' ((10 x 15 -15)/25), wllich is inadequately covered by the $4.71 
gains to VRT over zrniform. Regardless, the largest gains observed in Panel l a  have to do with 
recognizing that P should be treated as a temporal dynanlic decision, and that fertP rates should 
probably be higher than they typically have been on this study farm. 

Panel 1 b of table 4 shows the 5-crop (6-year horizon) counterpart to Panel 1 a. Now, both 
uniform and VRT fertP rates are substantially lower than the baseline. yet returns are substantially 

" Although not explicitly shown, in this research almost all (over 99%) of each economic difference 
shown in table 4 has to do with P, rather than N, management. Thus, we make no attempt to illustrate economic 
differences specific to N and P. 

l 3  It might be argued that the farm avg fertilizer baseline is somewhat of a "straw man" in that it would not 
be relevant for operators who already manage fertilizer by field. Therefore we could be giving too much credit to 
the response function approach to fertilizer management rather than to public universities, private consultants, and 
fertilizer companies who may be making field-level fertilizer recommendations. Nonetheless, it is probably 
unlikely that providers of fertilizer recomn~endations explicitly consider the time horizon issue as we do in this 
research. Furthermore, our study farm's operator indicated that, in spite of taking numerous field-level soil samples, 
his fertilizer management practices probably fall closer to the farm avg fertilizer baseline than to the optimal 
uniform simulation - because of the logistics of machinery and labor management, and admittedly, because of not 
being quantitatively aware of the expected gains to field-level management over farm-level management. 



greater. Interestingly, in spite of VRT averaging only 5 lb acre-' of fertP, compared to 21 for the 
baseline, projected yields were hgher with VRT. This is a tribute to placing fertP in the right 
place at the right time. 

Figure 1 1 shows the projected crop average fertP rates and associated changes in STP for 
the simulation behind Panel l a. On average. over 1 15 lbs of fertP were suggested in the first 
year and around 60 Ib in the second year. clearly indicative of a fast buildup of STP - which 
peaks at around 25 ppm ahead of the third crop. However, because the time horizon is not 
infinite, rather only 7 crops, the optimal plan places no fertP for crops 5 through 7, allowing STP 
to diminish to around 15 ppnl preceding crop 7. Figure 12 shows fertP and STP infornlation for 
the 5-crop horizon in Panel 1 b. The overall average 5 Ib acre" VRT fertP rate in Panel I b is 
clearly skewed towards the first two years - tinled to merely slow the STP decline over ensuing 
crops. What figure 12, or the 5 lb value in table 4, do not show is that a number of fields 
received over 80 Ib acre-' of fertP in the first year. These fields had the most to gain with large 
amounts of added fertP. Consequently, it is placing fertP in the right place and in the right time 
that causes a mere 5 Ib of fertP in a VRT setting to garner higher yields than 21 Ib in the baseline 
setting. It is also why managing only 5 Ibs of fertP (compared to 0 in uniform) can provide gains 
of $7.19 acre-'. 

In the Field #1 analysis in Panel 2% gains to P management are about evenly split 
between farm avg to uniform and uniform to VRT. Here, the $7.71 VRT over unifornz advantage, 
like the $7.19 advantage in Panel I b, is sufficient to cover the additional $5.40 soil sampling cost 
posited earlier. Again. the VRT line, with less fertP than the farm avg line, has higher yields. As 
in Panel 1 b. in Panel 2b it is shocking that managing only 3.3 Ib acre*' of fertP can result in $2.72 
gains. 

Results for Field #2 (panels 3a and 3b) confirm the results for the Farm and Field #1. 
Again, unless time horizons are very short, it appears higher fertP rates should generally be 
considered on this study farm. If the zriliform over avg and VRT over uniform gains in each panel 
of table 4 are added together it appears that gains to improved P management might be around 
$13 to $15 acre-' - before additional costs are factored in. 

Conclusion 

Following the description of several basic principles for constructing a yield response 
function, we have specified a number of requirements for response functions to be useful and 
reliable in aiding site-specific fertilization decisions. These requirements are 1) the function 
should be based on an asymptotic convergence towards a plateau yield; 2) the "limiting factor" 
idea should be embodied in the function (factors impact the yield response of other factors and 
no factor can Mly compensate for the lack of another factor - factors are generally 
complements); 3) a few factors must be allowed to behave as substitutes; 4) a zero-level of some 
input should not necessarily imply zero yield: 5) the function must be able to accept input "bads," 
where more input means lower yields; and 6) the h c t i o n  must be able to accept variables like 
pH, where yield might be expected to reach a maximum within the input range rather than at 
either endpoint. 



Using controlled experiment data for irrigated corn yield response to N and P fertilizer, 
this study compared the predictive and management implications of two alternative hct ional  
fornls: a quadratic and a modified Mitscherlich. Both functions fit the data well but resulted in 
considerably different fertilizer recommendations. The quadratic h c t i o n  is easy to estimate and 
hence can easily be used in a preliminary examination of the data. But, it may be agronomically 
problematic and will require many parameters to be estimated in a multi-variable response 
function. The modified Mitscherlich, on the other hand, is more complicated mathematically and 
more difficult to estimate. Yet, it typically has less parameters to estimate and is probably more 
agronomically appealing than is the quadratic. 

A modified Mitscherlich yield response function was estimated using farm-level data 
from a single study farm in northwest Kansas. Besides fertilizer and soil fertility, organic matter, 
pH, and soil particle size were allowed to impact wheat yield through a yield response model. 
Yield appeared to respond to soil test P but not to fertilizer P. A framework was established 
where fertilizer P above crop removal would allow for buildup of soil test P in future years, 
hence increased wheat yields. That framework allowed for baseline, profit-maximizing uniform, 
and site-specific fertilizer decisions to be simulated. 111 the simulations involving the discounted 
value of fertilizer decisions on 7 future crops over 9 years and 5 future crops over 6 years, a 
variable rate fertilizer P program had an advantage over a uniform fertilizer P program in the 
range of $2 to $8 acre-'. Overall gains to using VRT and the response function approach to 
improving fertilizer P management are expected to be around $1 3 to $15 acre-'. 

This work represents exploratory, not definitive, work in the area of building decision- 
aiding yield response functions using farm-level data from a number of input variables. The 
process appeared reasonable on western Kansas wheat. Although not tested, the yield response 
function fertilizer-determining framework should be especially fitting where lime is a routine 
requirement. Likely, the yield response function framework will not become a black box - 
academic and professional input will constantly be needed to determine whether yield response 
implications seem reasonable, how to get from a soil applied nutrient (e.g., lime) to a 
measurement of interest (e.g., pH), and farmer perceptions of risk. 
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Table 1. Suggested requirements for response functions estimated from site-specific data  and 
used for var iable  rate fertilizer recomnlendations 

1. asymptotic plateau-type convergence (yields flatten out over broad levels o f  high inputs) 

2. "limiting factor" framework: factors impact the yield response o f  other factors; no factor can fully 
compensate for the lack of another factor; most factors are considered complements 

3.  a few factors must be allowed to behave as  substitutes 

4. a 0-level of some input should not necessarily imply 0 yield 

5. must be  able to deal with input "bads," where increased levels lead to reduced yields 

6 .  must accommodate special variables like pH, where yield peaks mid-range 



Table 2. Implications of quadratic and M-function for yield response to  nitrogen and phosphorus 
fertilizer on irrinated corn. Tribune. Kansas 1992- 1998 

Yield maximizing Profit maximizing 

Quadratic M-function Quadratic M-function 

$/lb. N fertilizer $0.00 $0.00 $0.15 $0. 15 

$/lb. P,O, fertilizer $0.00 $0.00 $0.30 $0.30 

$mu. corn $2.50 $2.50 $2.50 $2.50 

optimal N fertilizer 215 infinite 200 263 

optimal PzO, fertilizer 76 infinite 72 40 

predicted yield 189.4 193.4 188.8 187.4 

no. of parameters estimated 7 6 

R2 0.8395 0.8544 

in-sample RMSE 19.9287 18.9872 

Table 3 .  Summary statistics for field records from study farm in NW Kansas, 1994-1999 (Farm data set) 

meall standard dev. minimum maximum 

wheat yield (bu acre*') 

fertN (Ibs N acre-') 

fertP (Ibs P,O, acre-') 

pH 

organic matter (%) 

STN (soil test N in lbs acre*') 27.49 10.67 1.22 48.00 

STP (soil test P in ppm Bray PI) 16.22 5.75 7.00 35.00 

STK (soil test K in ppm) 600.56 63.94 478.00 755.00 

% sand 22.02 10.52 5.00 50.00 

% clay 38.18 2.78 24.00 35.00 

% silt 49.79 10.18 24.00 70.00 

Notes: All soil test information based on 0-8" samples 



Table 4. Analysis of model simulated N and P fertilizer programs on wheat: farm average, optimal 
uniform, and optimal VRT; NW Kansas study farm: 7-crop (9-yr) and 5-crop (6-yr) planning horizons 

Mean of model simulations, data set observations by 7 projected crops 

discounted advantage 
(fertN) ( f e e )  ( S P )  gross over 

Ib N Ib P,O, soil test P wheat yield margin preceding row 
simulation acre" acre-' Bray PI bu acre-' $ acre-' $ acre-' 

Panel la: Farm data set; 92 field observations by 7 moiected future croDs 

farm avg fertilizer 53.0 2 1 .O 14.3 50.4 $669.10 ----- 
optimal uniform 65.6 30.4 21.2 53.9 $678.98 $9.88 

optimal VRT 64.2 26.5 19.6 53.5 $683.69 $4.71 

Panel lb: Farm data set; 92 field observations by 5 proiected future crops 

farm avg fertilizer 53.0 21.0 15.0 50.6 $537.48 ---- 

optimal uniform 63.0 0.0 12.2 49.3 $543.95 $6.46 

optimal VRT 62.1 5.0 13.3 50.7 $551.14 $7.19 

Panel 2a: Field #1 data set; 59 mid (2.5 acre) observations by 7 proiected future crops 

farm avg fertilizer 53.0 21.0 17.7 49.8 $659.47 --- 
optimal uniform 64.1 22.4 21.6 51.8 $666.67 $7.20 

optimal VRT 62.5 18.7 20.1 5 1.7 $674.38 $7.71 

Panel 2b: Field #I data set; 59 mid (2.5 acre) observations by 5 proiected future crops 

farm avg fertilizer 53.0 2 1 .O 18.3 50.0 $529.73 ---- 
optimal uniform 62.4 0.0 15.5 49.2 $54 1.3 1 $1 1.58 

optimal VRT 6 1.6 3.3 16.2 49.9 $544.02 $2.72 ---------------------------------------------------------------------------------------------- 
Panel 3a: Field #2 data set: 5 1 mid (2.5 acre) observations by 7 projected future crops 

farm avg fertilizer 53.0 21.0 15.1 51.6 $685.94 ------ 

optimal uniform 65.7 28.7 21.4 54.9 $697.39 $1 1.45 

optimal VRT 69.5 28.1 21.0 55.0 $70 1.02 $3.63 

Panel 3b: Field #2 data set; 5 1 fzrid (2.5 acre) observations by 5 proiected future crops 

farm avg fertilizer 53.0 21.0 15.7 5 1.8 $55 1.04 ------ 

optimal uniform 63.6 0.0 12.9 51.0 $562.3 1 $1 1.28 

optimal VRT 63.2 4.4 11.0 51.8 $564.55 $2.24 
Notes: Yields are projected using equation 18 model. After being initialized at measured values, soil test P values 
for crops 2 through 7 are determined from previous yields and P fertilizer rates. The farm average fertilizer 
simulation summarizes model simulated results after assigning 53 Ib N fertilizer acre-' and 21 Ib PzO, fertilizer acre.' 
to each observation and each future crop in the data set. The opfin~ul zrngorm simulation chooses fertilizer rates for 
each future crop that maximize the discounted expected gross margin (wheat sales less fertilizer cost) for all 7 future 
crops, using data set mean soil fertility measures. The recommended rates of N and P fertilizer (one N and one P 
level for each of 7 future crops) are assigned to each observation in the data set and model simulated results 
summarized. The optirnal VRT si~~lulation chooses the fertilizer ratcs for each future crop which maximize the 
discounted expected gross margin for all 7 future crops, using soil fertility measures unique to each observation in 
thc data set. A dollar advantage in the right column is a total 7- or 5-crop advantage, discounted to the present. 
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