PERIODIC DEEP TILLAGE OF NO-TILL CORN AND SOYBEAN SYSTEMS IN SOUTHERN ILLINOIS

S.A. Ebelhar, E.D. Nafziger, and C.D. Hart University of Illinois, Urbana, Illinois

Abstract

Low organic matter and low available moisture supplying soils in southern Illinois lend themselves to no-tillage crop production, but concern about compaction and rooting depth have led some to employ the use of periodic tillage. A field study was conducted at two locations in southern Illinois between 2000 and 2006 to evaluate the effects of periodic deep tillage (ripping 16-18 inches [40-45 cm] with minimum surface disturbance style shanks) prior to corn or soybean production. Deep tillage occurring either every year, every other year or every fourth year was compared to continuous no-tillage and continuous chisel tillage systems. Corn and soybean were grown annually and rotated between two fields at each location. Locations included the University of Illinois Dixon Springs Agricultural Center (DSAC) and Brownstown Agronomy Research Center (BARC). Each tillage treatment listed above was split with two secondary tillage treatments (no-tillage versus disk /field cultivator tillage). Because of the rough surface of the chisel treatment, secondary tillage treatments consisted of minimum tillage (single disking) versus disk/field cultivator tillage. In general, continuous no-tillage produced the highest yields. Tillage such as chisel tillage or disk tillage reduced the surface residue which probably led to reduced soil moisture availability during times of moisture stress. But more importantly, it appears that the continuous no-tillage system has improved internal drainage which increases no-tillage yields over continuous chisel tillage in years with wet springs (as measured by high rainfall in April and May). There is no indication from this study that the periodic tillage of no-tillage systems would justify the additional fuel and equipments costs.

Introduction

Throughout the midwest there are some 80 million acres in conservation tillage (30% residue cover) with some 35 million in no-tillage systems. In Illinois there are about 6 million acres in no-tillage systems, much of which occupy the upland and highly erodible soils in southern Illinois. These include both fragipan and claypan soil types which have root restrictive layers limiting water uptake and nutrient efficiencies. The impacts of no-till on these soils include the beneficial effects of leaving a mulch layer at the surface which aids in soil moisture retention, especially during brief periods of drought. However there are some who believe that periodic tillage of these no-till systems is required to reduce compaction and increase rooting depth. The objective of this study was to determine if the periodic deep ripping of continuous no-tillage production would lead to increase yields in a corn-soybean rotation.

Methods

A field study was established in the fall of 1999 at two locations in southern Illinois, the University of Illinois (UI) Dixon Springs Ag. Center (DSAC) and the UI Brownstown Agronomy research Center (BARC). The soil at DSAC was a Grantsburg sil. fragipan soil and at BARC was a Cisne sil. claypan soil. Fall tillage (primary tillage) treatments consisted of 1) continuous no-tillage, 2) continuous chisel tillage. 3) modified no-tillage employing annually a deep ripper utilizing minimum residue disturbance shanks which ran about 16-18 inches deep in the soil, 4) modified no-tillage using the deep ripper every other year, and 5) modified no-tillage using the deep ripper every other year, and solut continuous were favorable. These tillage blocks were split (by secondary tillage) in the spring with half being planted without additional tillage (no-tillage) and half planted after a seedbed was prepared with disking twice or disking following by a field cultivation. In the case of the continuous chisel treatment, the "no-tillage" spring treatment actually consisted of a light disking (once) to level the surface prior to planting. Planting dates for corn and soybean are presented in Table 1. Plant stands (not shown) and grain yields were taken shortly after physiological maturity.

Year	DSAC Corn	DSAC Soybean	BARC Corn	BARC Soybean
		planting	g date	
2000	May 18	May 18	May 17	May 18
2001	April 30	April 30	April 19	April 30
2002	May 30	May 31	May 28	May 29
2003	June 2	June 2	June 1	June 23
2004	May 24	May 25	April 15	June 18
2005	May 11	May 13	April 18	May 5
2006	April 18	May 23	April 24	May 24

Table 1.	Planting da	es for corn a	and soybean at	each location.
----------	-------------	---------------	----------------	----------------

Results and Summary

Corn yields varied over years and locations, with more variation occurring at BARC. At DSAC, yields ranged from a low of 107 bu/acre in 2002 to 219 bu/acre in 2006 with an average over the seven-year period of 150 bu/acre (Table 2). Corn yields were much lower at BARC, with a range of 16 bu/acre in 2000 to 207 bu/acre in 2004 and a seven-year average of 109 bu/acre (Table 3). Within most years and overall the continuous no-tillage treatment had equal or higher yields than any of the other primary tillage treatments at both DSAC and BARC (Tables 2 and 3, Figure 1). In 2002 and 2006, the continuous chisel treatments had significantly lower yields than other tillage treatments, and yielded an average of 9 bu/acre lower yields over the seven-year period at DSAC. At BARC, there was not a year where there was a significant difference among the primary tillage treatments. The effects of secondary tillage was significant more often than

primary tillage, with overall differences of 5 bu/acre and 4 bu/acre for DSAC and BARC, respectively, for no-tillage over disking. This would indicate that spring tillage to prepare a "better" seedbed is unnecessary and may even hurt corn yields either by reducing soil mulch cover or reducing internal drainage by disrupting flow channels. The reduction of mulch cover could potentially cause less infiltration of rain water and greater evaporation thus reducing available soil moisture, especially during periods of drought during the growing season, which are common in southern Illinois.

Soybean yields are less volatile over the years and locations of this study. The average yields at both DSAC and BARC was 45 bu/acre (Tables 4 and 5). Only in 2004 at BARC, was there a significant reduction in yields with chisel tillage compared to the other tillage treatments. As with corn, the soybean yields associated with continuous no-tillage were equal to or better that the other tillage treatments (Figure 2).

When comparing the impact of periodic tillage, there was no significant difference between 1-yr, 2-yr, and 4-yr treatments, but there was a slight yield advantage with the 4-yr treatment. It appears to support the notion that little or no tillage is better than more frequent tillage. This is also supported when comparisons are made between continuous no-tillage and continuous chisel tillage. High rainfall levels in April and May indicate a wet spring and corn yield differences between no-tillage and chisel tillage are much higher when April + May rainfall is higher (Figures 3 and 4). This is an indication that tillage may be disrupting internal drainage and therefore tilled plots remain wetter during the spring that no-tilled plots. There were no significant differences among tillage treatments for corn stand counts (not shown) in most cases, but wet soil conditions may be lowering yields under chisel tillage in other ways, perhaps due to lower root respiration rates and/or increased N losses associated with denitrification.

Primary	Secondary	2000	2001	2002	2002	2004	2005	2006	
<u> </u>	<u> </u>	2000	2001	2002	2003	2004	2005	2006	Ave
		Corn Yields (bu/acre)							
No-tillage	No-tillage	132	160	132	133	154	170	219	157
	Disk 2x	127	165	123	132	143	161	196	150
Chisel	Disk 1x	127	164	113	126	136	167	188	146
	Disk 2x	127	162	107	120	141	159	175	142
Rip yearly	No-tillage	127	157	132	133	153	162	206	153
	Disk 2x	128	165	120	122	147	162	193	148
Rip every 2 yr	No-tillage	131	162	133	126	152	164	208	154
	Disk 2x	125	170	125	128	153	162	189	150
Rip every 4 yr	No-tillage	118	160	132	138	152	179	214	156
	Disk 2x	126	166	131	130	146	159	200	151
Average	No-tillage	130	163	128a	133	149	165	208a	153
Primary	Chisel	127	163	110b	123	139	163	181b	144
Tillage	Rip yearly	128	161	126a	128	150	162	199a	151
	Rip every 2 yr	128	166	129a	127	153	163	199a	152
	Rip every 4 yr	122	163	132a	134	149	169	207a	154
Average	No-tillage	127	161b	128a	131	149	168a	207a	153
Secondary	Disk 2x	127	166a	121b	126	146	161b	191b	148
Statistics					Signif	icance			
Primary Tillage	e (P)	NS	NS	**	NS	NS	NS	***	
Secondary Tilla	ige (S)	NS	**	***	NS	NS	***	***	
PxS		NS	NS	NS	NS	NS	NS	NS	

Table 2.Effects of primary and secondary tillage on corn grain yields at Dixon Springs,
2000-2006.

* = 10%, ** = 5%, *** = 1%, NS = nonsignificant.

Primary Tillage	Secondary Tillage	20 00	2 001	2002	2003	2004	2005	2006	Ave
		Corn Yields (bu/acre)							
No-tillage	No-tillage Disk 2x	28 25	124 136	85 74	119 121	207 189	101 74	167 176	119 114
Chisel	Disk 1x Disk 2x	35 42	118 128	75 78	115 100	189 179	93 56	154 181	111 109
Rip yearly	No-tillage Disk 2x	38 24	119 130	73 71	104 104	190 169	74 64	146 158	106 103
Rip every 2 yr	No-tillage Disk 2x	16 27	115	68 62	115	167 169	91 73	166 153	105 101
Rip every 4 yr	No-tillage Disk 2x	34 31	110 129	82 56	102 108 111	187 186	106 83	171 159	114 108
Average Primary Tillage	No-tillage Chisel Rip yearly Rip every 2 yr Rip every 4 yr	27 39 31 22 33	130 123 125 119 120	80 77 72 65 69	120 108 104 109 110	198 184 180 168 187	88 75 69 82 95	171 168 152 159 165	116 110 105 103 111
Average Secondary	No-tillage Disk 2x	30 30	117a 1 29 b	77a 68b	112 108	188 178	93a 70b	161 165	111 107
Statistics					Signif	icance			_
Primary Tillage (P) Secondary Tillage (S) P x S		NS NS NS	NS *** NS	NS ** NS	NS NS NS	NS NS NS	NS *** NS	NS NS NS	

Table 3.Effects of primary and secondary tillage on corn grain yields at Brownstown,
2000-2006.

* = 10%, ** = 5%, *** = 1%, NS = nonsignificant.

Primary Tillage	Secondary Tillage	2000	2001	2002	2003	2004	2005	Ave
		Soybean Yields (bu/acre)						
No-tillage	No-tillage	41	54	39	46	41	58	47
	Disk 2x	42	51	39	42	37	56	44
Chisel	Disk 1x	41	52	38	42	34	56	44
	Disk 2x	39	53	38	41	34	52	43
Rip yearly	No-tillage	40	50	38	47	41	59	46
	Disk 2x	41	52	40	43	39	56	45
Rip every 2 yr	No-tillage	41	55	40	45	40	59	47
	Disk 2x	42	51	40	45	40	59	46
Rip every 4 yr	No-tillage	43	52	39	45	42	57	46
	Disk 2x	39	53	41	43	39	58	46
Average	No-tillage	41	53	39	44	39	57	46
Primary	Chisel	40	53	38	41	34	54	43
Tillage	Rip yearly	41	51	39	45	40	57	45
	Rip every 2 yr	42	53	40	45	40	59	46
	Rip every 4 yr	41	53	40	44	41	57	46
Average	No-tillage	41	53	39	45	40	58	46
Secondary	Disk 2x	41	52	40	43	38	56	45
Statistics				Si	gnifican	ce		
Primary Tillage	e (P)	NS	NS	NS	NS	**	NS	
Secondary Tillage (S)		NS	NS	*	***	NS	NS	
PxS		***	**	NS	NS	NS	NS	

Table 4.Effects of primary and secondary tillage on soybean grain yields at Dixon
Springs, 2000-2005.

* = 10%, ** = 5%, *** = 1%, NS = nonsignificant.

Primary Tillage	Secondary Tillage	2000	2 001	2002	2003	2004	2005	Ave
				- Soybea	n Yield	s (bu/ac	re)	
No-tillage	No-tillage Disk 2x	55 54	51 49	24 26	43 42	62 59	51 49	48 47
Chisel	Disk 1x Disk 2x	51 53	46 40	22 22 22	33 43	61 60	48 45	44 44
Rip yearly	No-tillage	46 48	45 46	22 21	36 40	59 56	45 46	42 43
Rip every 2 yr	No-tillage	55	48	23	40	56 58	45	45
Rip every 4 yr	No-tillage	55 48	50 47 54	24 25 28	42 41 47	58 62 59	40 47 46	40 46 47
Average Primary Tillage	No-tillage Chisel Rip yearly Rip every 2 yr Rip every 4 yr	54 52 47 55 52	50 43 45 49 51	25 22 21 23 27	42 38 38 41 44	61 61 57 57 61	50 46 45 45 45 47	47 44 42 45 47
Average Secondary	No-tillage Disk 2x	53 51	48 48	23 24	39 43	60 59	47 46	45 45
Statistics		Significance						
Primary Tillage (P) Secondary Tillage (S) P x S		NS NS NS	NS NS *	NS NS NS	NS *** NS	NS NS NS	NS NS NS	

Table 5.Effects of primary and secondary tillage on soybean grain yields at Brownstown,
2000-2005.

* = 10%, ** = 5%. *** = 1%. NS = nonsignificant.

Figure 1. Effects of primary tillage on corn yields at Dixon Springs (DSAC) and Brownstown (BARC), averaged over 2000-2006.

Figure 2. Effects of primary tillage on soybean yields at Dixon Springs (DSAC) and Brownstown (BARC), averaged over 2000-2005.

Figure 3. Relationship between rainfall in April and May versus corn yield differential between no-tillage and chisel tillage at Dixon Springs, 2000-2005.

Figure 4. Relationship between rainfall in April and May versus corn yield differential between no-tillage and chisel tillage at Brownstown, 2000-2005

PROCEEDINGS OF THE

THIRTY-SIXTH NORTH CENTRAL EXTENSION-INDUSTRY SOIL FERTILITY CONFERENCE

Volume 22

November 7-8, 2006 Holiday Inn Airport Des Moines, IA

Program Chair: Dale Leikam Kansas State University Manhattan, KS (785) 532-6183 dleikam@ksu.edu

Published by:

Potash & Phosphate Institute 772 – 22nd Avenue South Brookings, SD 57006 (605) 692-6280 Web page: www.ppi-ppic.org

Cover photo provided by Dr. Harold F. Reetz, Jr., Monticello, Illinois.