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Abstract 
 
Crop uptake of potassium (K) has demonstrated sensitivity to subsoil variation in K content. This 
fact has not been sufficiently considered in K management strategies in part due to logistical 
difficulties in sampling spatially variable subsoil K. We propose a simplified soil factorial 
model, a response surface, to enable site-specific accounting of whole root zone K supply for 
loess over till soils. We compared the performance of two peak functions and a non-parametric 
local regression procedure to model soil-landscape K variation. These models were trained and 
tested on soil profile K sampled from within Missouri’s Major Land Resource Area 113, the 
Central Claypan Areas. The local regression procedure was found to be most appropriate for 
mapping subsoil K because it is simple, quick, and readily provides prediction intervals. These 
results highlight the potential we have to account for and manage whole root zone K site-
specifically. 
 
Abbreviations: CEC, cation exchange capacity; DTCmax, depth to clay maximum; ECa, bulk 
apparent soil electrical conductivity; K, potassium; LOESS, locally weighted regression 
procedure; LPP, logistic power peak function; MLRA, major land resource area; PIV, Pearson 
IV peak function; RMSE, root mean squared error; R2, coefficient of determination  
 

Introduction 
 
Soil fertility management is crucial for optimizing crop production. Application of fertility 
amendments is physically limited to the depth of incorporation in tilled cropping systems and to 
the surface or near surface in no-till and perennial cropping systems. Likewise, due to physical 
limitations and traditional practice, soil sampling procedures measure the surface (15 to 20 cm) 
layer often referred to as the ‘plow layer’. But plant nutrients in the entire root zone are 
important, and if accounted for, could help to better understand plant response (or lack of 
response) to surface soil amendments. 
 
Previously it was demonstrated that depth profiles of clay in MLRA 113 exhibit a peak shape 
(Myers et al., 2007). Subsequently, we used asymmetric peak functions to model continuous 1D 
depth profiles of clay, silt, and pH at multiple landscape positions (Myers et al., 2011). 
Parameters of peak functions such as Depth to Clay Maximum (DTCmax) and others controlling 
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the abruptness, magnitude, and width of the peak were correlated to landscape geomorphology. 
Because subsoil K in MLRA 113 is so governed by the mineralogy of the argillic peak (Bray, 
1935), it also expresses a peaked profile distribution. 
 
Variable depth distribution of subsoil K may have implications for K management. Subsoil can 
provide a large portion of the K required by grain and forage species. Kuhlmann et al. (1985) 
found that loess derived subsoils supplied spring wheat an average of 34% of the K taken up by 
the plant. Haak (1981) demonstrated that 25 to 50% of K uptake in barley and oats comes from 
subsoil, and found a 100% greater K uptake in grain from a clayey subsoil compared to a loamy 
sand subsoil. Soybeans and corn showed reduced or no K leaf concentration response to surface 
applied K (Woodruff and Parks, 1980) on Southeastern USA coastal plains soils which have clay 
horizons within 50 cm depth. These studies suggest clay-bound K in subsoil argillic horizons is 
an important source for plant K uptake. 
 
Soil fertility management guidelines do not usually consider the contribution of subsoil K in their 
recommendations. Some notable exceptions in the U.S. are South Carolina (Mylavarapu and 
Moore, 1998), Wisconsin (Kelling et al., 1999), and Iowa (Sawyer et al., 2003). Each of these 
states belongs to regions with soil morphology that can impact root zone K supply and crop 
response to plow layer K levels. 
 
The glacially derived landscapes of Wisconsin and Iowa have regions with differing capacities to 
supply plant-available K from the subsoil. University of Wisconsin fertilizer recommendations 
consider the variable subsoil nutrient supply, providing different critical values and interpretation 
classes for plow layer soil test K within 5 distinct subsoil fertility groups. The groupings are of 
relatively large extent and defined by texture and mineralogy (Laboski et al., 2006). Iowa 
classifies the major corn and soybean producing soils within 12 general soil associations as either 
high or low subsoil K. Iowa State University Extension recommendations provide different plow 
layer soil test K critical values and interpretive classes based on the subsoil K classification 
(Sawyer et al., 2003). Each of these examples provides regional or soil map-unit level 
modifications in K nutrient management guidelines, but the potential exists to account for subsoil 
K supply at sub-field scales with better subsoil K information. For instance, Winzeler et al. 
(2008) documented the use of a 3D covariance model to explain field-scale soil wetness and 
topographic effects on subsoil K availability in loess over till soils of Indiana. 
 
The findings in Wisconsin, Iowa, and Indiana are applicable to the landscapes of the Missouri 
and Illinois Central Claypan Areas, Major Landscape Resource Area 113 (MLRA 113) (USDA-
NRCS, 2006). The soils in this domain have a common morphology and pedogenic history and 
like those of Iowa, Indiana, and Wisconsin, are also of glacial origin. Upland soil profiles in 
MLRA 113 have a loess over till morphology with variable depth to more or less ubiquitous 
argillic (Bt) soil horizons having large clay concentration (450 -650 g kg-1 soil) and a large CEC 
(10.6 – 44.7 cmol [+] 100-1 g soil). These subsoil argillic horizons have a large influence on soil 
function. They are dominated by 2:1 layered aluminosilicate minerals that both adsorb and 
supply large quantities of K+ (Spautz, 1998) and other cations (Bray, 1935). Further, we know 
that roots of soybean and corn in these landscapes preferentially explore the subsoil argillic 
horizons (Yang et al., 2003; Fraisse et al. 2001; Wang et al., 2003; Myers et al. 2007). 
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Field scale maps of the spatial variation in subsoil K could prove useful to improve plow layer 
soil test K interpretive classes and to refine fertilizer application recommendations. However, 
direct measurement of subsoil K, especially in fields with variable depth to Bt horizons, would 
be prohibited by the labor and laboratory costs required. Depth to claypan (upper boundary of the 
first argillic horizon) has been successfully mapped with ECa in the study domain (Doolittle et 
al., 1994; Sudduth et al., 2010), and similar techniques were adopted to map DTCmax (Myers, 
2008). 
 
The plow layer soil test levels of K are greatly modified from natural levels on production 
agriculture fields. Conversely, pedogenic factors determine the spatial distribution of subsoil 
nutrient levels and fertility properties more than past management. This is because the soil 
morphology and clay mineralogy have a dominant influence on nearly all physical and chemical 
fertility properties. Spatial variation in these pedogenic processes is tightly coupled to spatial 
variation in both DTCmax and subsoil K content. Therefore, to account for and to map subsoil K 
levels we propose that it is more effective to use a quantitative soil-landscape model to estimate 
spatially variable subsoil K rather grid sampling of soil profiles. 
 

Objective 
 

The objective of the study was to develop and test quantitative soil-landscape models (LPP, PIV, 
and LOESS) estimating subsoil (15 to 100 cm) K distribution for MLRA 113 upland soils. 

 
Materials and Methods 

 
Soil Profile and Sensor Measurements 
A model training dataset of subsoil K measurements was collected from several sources. Table 1 
provides a description and includes references for more detailed methods used to develop each 
dataset. The samples of dataset 3 were collected by soil scientists of the National Cooperative 
Soil Survey in accordance with standard methods (Soil Survey Staff, 1993). The samples in 
datasets 1-4 were used as a training dataset for modeling procedures (n=1722), while an 
independent set of samples measured from the target field and a nearby field (dataset 5) were 
held out as a model testing dataset (n=111). Potassium was measured by emission spectroscopy 
from NH4OAc extractions following the standard North Central Region methodology (Brown, 
1998). Analyses were conducted either by the University of Missouri Soil and Plant Diagnostic 
Laboratory (datasets 2 and 4) or by the University of Missouri Soil Characterization Laboratory 
(datasets 1, 3, and 5). 
 
Table 1.  Data sources and sampling/modeling support. 
Dataset Train/Test Sites n Sample Support Reference 
1 Train 76 440 0.15 - 1.2 m x horizon (Miles and Hammer, 
2 Train 108 552 0.15 - 1.2 m x 15 cm layers (Spautz, 1998) 
3 Train 110 645 0.15 - 2 m x horizon (unpublished) 
4 Train 85 85 0.15 - 1.2 m x 15 cm layers (Jung et al., 2005) 
 Training 

Total 
379 1722   

5 Test 26 111 0.15 - 1.2 m x horizon (Kitchen et al., 1999) 
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Depth to clay maximum for the soil profiles were collected by observation or calculated by 
anisotropic projection (Myers, 2008). An EM-38 (Geonics Ltd., Mississagua Ontario) ground 
conductivity sensor was used to map the test field site on 10-m transects using an ATV and cart 
(Sudduth et al., 2003). The DTCmax calibration model from (Myers et al., 2008) was applied to 
the interpolated ECa map of the target field to produce a field extent map of DTCmax (RMSE = 
11.6 cm). 
 
Pedogenic Response Surface Functions: LOESS, LPP, and PIV 
The argillic peak shape can be complex and variable as DTCmax changes across the landscape. As 
such, models were selected that allow flexibility in fitting peaked forms, and have been chosen to 
represent landscape driven argillic peak variation. These were two parametric functions, the 
logistic power peak (LPP) (Romanenko, 2005) and the Pearson IV (PIV) (Pearson, 1895) 
functions and the non-parametric locally weighted regression (LOESS) procedure (Cleveland 
and Devlin, 1988). 
 
Locally Weighted Regression 
Locally weighted regression models were fitted to the training dataset to develop a 
nonparametric response surface for estimating K. The LOESS procedure fits a set of robust 
regression models within a moving window across the multivariate predictor space. In our case 
the predictor space was a 3D response surface defined by profile depth (d) and the pedogenic 
gradient, DTCmax. Pointwise estimates of fit standard error are readily available from the LOESS 
algorithm and were used to approximate a 95% prediction envelope for the fitted LOESS PRS 
model of K. 
 
Peak Functions 
The LPP and PIV peak functions were previously described in Myers et al. (2010). Reviewed 
succinctly, these two functions have 5 or 6 parameters that determine their peak shape. A model 
of subsoil K can be constructed from these peak functions by selecting constants or sub-functions 
of the parameters which match observed pedogenic variation in the landscape. In the following 
candidate LPP response surface, the constant 0.1 cmol/100 g is chosen for the intercept (α), a 
quadratic function describes variation in the amplitude of the clay peak (β), and linear functions 
determine the depth (µ), thickness (δ), and asymmetry (ε) of the PRS (eq. 4). 
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For equations 1, 2, and 3, ۹෡  is a pedogenic response surface matrix of subsoil K concentration, 
PEAK is a peak function , d is the vector of depths at which ۹෡  is to be estimated, and λ are the 
parameters of the peak function (α, β, µ, δ, ε). Equation 1 and the analog for the PIV were 
rearranged as objective functions of the unknown parameters. Nonlinear optimization procedures 
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were implemented to solve the objective equations. Model performance was gauged by 
calculating root mean squared error (RMSE) and coefficient of determination (R2) from 
regression of the model estimates on both the training and independent test datasets (RMSEtrain, 
RMSEtest, R

2
train, and R2

test). 
 

Results 
 
The LOESS, LPP, and PIV models resulted in an R2

train of 0.67, 0.64, and 0.63 and an RMSEtrain 
of 0.07, 0.08, and 0.08 cmol K+ 100 g soil-1respectively. For an example, the fitted PIV model is 
displayed in figure 1with the training data (greyscale spheres) and the testing data (white 
spheres). The test measurements were under-estimated by all approaches demonstrating a bias of 
about 0.1 cmol K+ 100 g soil-1 (figure 1). 
 
Comparison of PRS Models 
Each of the three techniques used to build subsoil K models has strengths and weaknesses. First, 
it is useful to discuss the major tradeoffs between the nonparametric LOESS model versus the 
parametric LPP and PIV models. Foremost, the LOESS PRS model is capable of fitting any form 
of surface. A major disadvantage of the LPP and PIV models is the fairly specific form of depth 
function that a parametric PRS model could fit. 
 
There is a major difference in the complexity of implementation between the LOESS and the two 
parametric models. Fitting the PIV and LPP PRS models requires i) choosing a functional form - 
including that of the sub-functions, ii) pre-selecting starting values for as many as a dozen 
parameters, iii) setting bounds on the solutions of the parameters, iv) successful implementation 
of a nonlinear optimization algorithm. By contrast, the LOESS algorithm is straightforward to 
implement, fast, no parameters need be pre-specified, and it directly approximates the prediction 
envelope of the model. 
 
It is critically important that numerical soil mapping techniques are able to provide an estimate 
of the accuracy of the map. This is a key advantage of data driven soil mapping over traditional 
methods. The LOESS procedure implemented here provides point-wise standard error estimates 
for the training data, giving a reasonable approximation of not just the range in characteristics of 
a soil property at any given place in the domain, but also the confidence level of the target 
property estimate. The LOESS PRS method offers the capability to better propagate errors 
through the modeling procedure and improves the utility of the estimated map for management 
decisions. 
 
 
 
 
 



 

 

 

Figure 1. The fitted Pearson IV (PIV) response function is shown with the training (greyscale) and testing (white) data points. 
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Mapping the Subsoil K Model 
Given the results above, especially the added benefit of readily obtainable prediction envelope 
estimates, the LOESS model was selected to demonstrate mapping subsoil K (15 to 100 cm) in 
one of the testing fields. A volumetric cutaway view of the continuous depth function estimate 
(fig. 2) gives an indication of how the spatially variable argillic peak results in spatially variable 
subsoil K. Some key features in this field are distinct areas of high and low subsoil K 
concentration.  
 
The response surface models estimate subsoil K at depths of 15 to 100 cm with a range of 
DTCmax from 10 to 100 cm. The models are applicable anywhere an argillic horizon exists in 
loess or upper till in the study area; therefore, the model excludes areas of inceptisols and 
entisols in floodplains. The subsoil models are fitted without respect to spatial location and 
instead the spatial mapping of the continuous depth function may be achieved by mapping the 
response surface model to the soil-landscape through DTCmax. (fig. 2). 
 

 

Figure 2. Cutaway view of the continuous depth function estimate of K for a 30 ha field in 
MLRA 113. 
 

Discussion 
 
Using Subsoil Fertility Information in Crop Management 
Soil nutrient management might be improved by using high resolution subsoil fertility maps such 
as those developed in this study. Foremost, K application recommendation equations could be 
modified to consider spatially variable subsoil supply within fields like the example field. 
Amounts of applied K fertilizer may potentially be reduced on soils with a large subsoil K 
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reservoir, such as a site with small DTCmax, or increased on a site with deep silty sediments and 
low subsoil K. This is more important in areas where subsoil K can vary substantially at the 
field, farm, or regional extent, such as it does in MLRAs 113. 
 
Fertilizer applications must be made on the basis of good information about the nutrient needs of 
the crop species grown, the nutrient levels available to the plant, and the response of the crop to 
changes in soil test values. However, Missouri’s existing K fertilizer recommendation equations 
are calibrated statewide to surface soil test K levels. Subsoil K maps can provide better 
information about plant available K, but this information is not sufficient by itself to apply the 
correct level of fertilizer. Linking these two management tools there needs to be a body of 
‘calibration’ research that relates the soil test level and/or ameliorating additions to crop yield 
response. However, at this point, there is little in the way of calibration research to estimate the 
portion of crop yield response due to subsoil K, and then to modify the surface applied fertilizer 
recommendation. 
 

Conclusion 
 
Crop uptake of K has demonstrated sensitivity to subsoil variation in K content and may not be 
sufficiently considered in K management research and recommendations. The techniques 
employed here could allow within-field estimation of spatially-variable subsoil K supply in the 
Central Claypan Regions and similar landscapes. Combined with standard surface sampling 
techniques, subsoil K maps could be used to develop spatially variable estimates of whole root 
zone plant available K. However, very little soil test calibration or crop physiology research is 
available to account for this nutrient reservoir in fertilizer recommendations. This is a knowledge 
gap that warrants future research to optimize productivity and economic sustainability of 
cropping systems. 
 
Among the modeling methods used here to map subsoil K, the non-parametric LOESS procedure 
was the simpler to implement, readily generated confidence statistics, and produced similar 
results to the two peak functions. Finally the technique is useful to map other soil properties in 
the study domain when correlated to clay mineralogy. The method is directly extendable to map 
CEC and other cations such as those of Ca, Mg, Na, Al, and H, as well as base saturation. A 
more complete assessment of the impact of subsoil nutrient supply on plant response and uptake 
could improve both the profitability and sustainability of crop production. 
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