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Abstract 
 

Yield prediction is important for making in-season agronomic input decisions as well as for 
greater logistical decisions. In predicting the crop yield based on ground-based active optical 
sensing data, the ordinary statistical unweighted linear or nonlinear regression models are the 
most popular choices. However, these unweighted models may not be accurate enough for 
practical use because they are based on the assumption that each data point for regression is 
obtained with equal precision and that each data point contributes equally to the model 
construction. Using unweighted models relying on the average sensing information alone, some 
important sensing information such as the variation of the sensor readings within each subplot, is 
left unmined. To improve the performance of the prediction models, feasibility of developing and 
applying weighted nonlinear regression models was explored. Novel intensified weights were 
developed based on the coefficient of variation of sensing data within each subplot. The 
experiments involved two crops, spring wheat and corn; two sites for each crop, using two 
ground-based active optical sensors, GreenSeeker™ and Holland Crop Circle™, two 
NDVI-based crop indices, red NDVI and red edge NDVI, and two general types of regression 
models, exponential and quadratic (weighted or unweighted) models. Results indicated that the 
proposed intensified weighted nonlinear regression models outperform their corresponding 
unweighted regression models in terms of R2. Results also showed that this methodology did not 
improve predictions using pooled multiple site-year data. The reason may be that pooled data 
consisted of greater sample number enabling unweighted regression models to yield a more 
stable and significant relationship. 
 

Introduction 
 
Remote sensing technologies, such as ground-based active optical sensing and satellite imaging, 
enable people to collect and analyze data in a non-destructive, efficient, non-costly, and effective 
way, and therefore have been widely applied to early-season crop yield prediction and fertilizer 
management practices. In predicting the crop yield based on ground-based active optical sensing 
data, the ordinary statistical unweighted linear or nonlinear regression analyses are the most 
popular choices. One of the common assumptions underlying most unweighted regression 
modeling methods, including linear and nonlinear least squares regression, is that each data point 
provides equally precise information about the deterministic part of the total process variation. In 
other words, the standard deviation of the error term is constant over all values of the predictor or 
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explanatory variables (NIST/SEMATECH, 2012). Obviously, this ideal situation is extremely 
difficult to arrive at in reality. Extensive soil sampling, optical sensor measurements of plants, 
and geostatistical analyses, indicated that statistically significant differences in nitrogen 
availability existed at a 1 m2 spatial field (Raun et al., 1998; Solie et al., 1999). In situations like 
this, when it may not be reasonable to assume that every observation should be treated equally, 
information of coefficient of variation (CV) of sensor readings may be a useful aid to improving 
regression models performance. CV information has been used to improve the crop in-season N 
recommendation algorithm (Raun et al., 2005). This paper explores an alternative way of using 
sensor readings’ CV-based information in early-season crop yield prediction by incorporating it 
into weighted nonlinear regression to maximize the efficiency of parameter estimation. This is 
done by attempting to give each data point its proper amount of influence over the parameter 
estimates. A procedure that treats all of the data equally would give less precisely measured 
points more influence than they should have and would give highly precise points too little 
influence.  
 

Materials and Methods 
 

Experimental setup and data collection 
Spring wheat and corn data generated from N rate trials during 2012 were used in the analyses. 
The two spring wheat and two corn experimental sites were Gardner and Valley City, and Durbin 
and Valley City, in North Dakota respectively. The experimental design of each N-rate study as a 
random complete block design with four replications and six N treatments. The experimental unit 
within each experimental site was 30 feet by 30 feet. Two ground-based active optical sensors, 
GreenSeeker® (NTech Industries, Inc., Ukiah, CA, USA) and Crop Circle® (Holland Scientific 
Inc., Lincoln, Nebraska, USA), were used to collect crop canopy NDVI ((near infrared-red) / 
(near infrared + red)) data at the 4-leaf stage (Feekes 4) for spring wheat yield prediction and V6 
and V12 stages for corn yield prediction. The in-season estimate of yield (INSEY), essentially an 
estimate of the rate of accumulated biomass, was calculated by dividing NDVI by positive 
accumulated GDD from planting date (Stone, et al. 1996) and then used as the independent 
variable in statistical regression. The GreenSeeker provided one red NDVI and the Crop Circle 
provided one red NDVI and one red-edge NDVI. Hence we have one GreenSeeker red INSEY 
(GSINSEY), one Crop Circle red INSEY (CCINSEY), and one Crop Circle red-edge INSEY 
(CCREINSEY). Dry grain yield was used as the dependent variable in each regression model. 
 
Intensified weighted nonlinear regression 
In performing statistical regression, the best-fit curve is often assumed to be that which 
minimizes the sum of squared residuals. This is the ordinary or unweighted least squares 
approach. However, in cases where the dependent variable does not have constant variance a sum 

of weighted squared residuals may be minimized: and there are many options to 

solve this optimization problem (Bukac, 2008). Since CV is a kind of normalized standard 
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deviation reflecting the variability of sensor readings, it is a good candidate to be used as the 

weight in regression. The initial weights (i=1, 2, .., n) for constructing weighted regression 

models are defined below:  

  

,  

where  is the number of data points involved in the regression. To further strengthen the 

impact of those subplots each with smaller sensor reading variations and weaken the influence of 
those subplots each with larger sensor reading variations, a series of intensified weights based on 
the initial weights were defined:  
 

,  

where  and  is the power of the initial weights. For each determined  we have a 

corresponding set of weights. We call these new weights the Intensified Weights. For simplicity, 

we call the initial weight set W1, the intensified weight set with  W2, the intensified 

weight set with  W3, and so on. 

 
Analyzing Methods 

Exponential function and polynomial quadratic function  

were adopted in this study to compare the performance of the proposed method with that of the 
corresponding unweighted regression models. All these statistical weighted or unweighted 
regression models were built and analyzed using Matlab 8.0 (The MathWorks Inc., 2012) based 
on weighted or nonweighted least squares method. Model statistical significance and R2 were 
used as the indicators of the performance of each regression model. 
 

Results, Discussion, and Summary 
 
Since our experimental results indicated that in most cases the polynomial quadratic regression 
models outperform the corresponding exponential regression models, only the polynomial 
quadratic regression results in terms of R2 are listed in Table 1 through Table 3, with Table 1 
being the regression results for spring wheat and the other two tables being the results for V6 
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corn and V12 corn, respectively. Weights of W1 and W8 were selected to incorporate into the 
regression models. W0 in the tables represents unweighted regression, and NS means the model 
is not significant at the 0.05 level of confidence. The meanings of the other abbreviations in these 
tables are listed below: 

GGR: Gardner GreenSeeker red INSEY 
GCR: Gardner Crop Circle red INSEY 
GCRE: Gardner Crop Circle red edge INSEY 
VGR: Valley City GreenSeeker red INSEY 
VCR: Valley City Crop Circle red INSEY 
VCRE: Valley City Crop Circle red edge INSEY 
GVGR and DVGR: two-site pooled GreenSeeker red INSEY 
GVCR and DVCR: two-site pooled Crop Circle red INSEY 
GVCRE and DVCRE: two-site pooled Crop Circle red edge INSEY 

Two figures each comparing the regression effects among unweighted, W1-weighted, and 
W8-weighted are also given below, with Figure 1 concerning the relationships between Valley 
City wheat GreenSeeker red INSEY and wheat dry grain yield and Figure 2 being the 
relationships between Durbin V6 corn Crop Circle red edge INSEY and corn dry grain yield. 
 
Table 1.  Regression results for spring wheat wheat vs INSEY in terms of R2. 

weight GGR GCR GCRE VGR VCR VCRE GVGR GVCR GVCRE 

W0 0.5175 0.3236 0.3526 0.3874 0.2949 0.3030 0.5226 0.3362 0.2439 

W1 0.5543 0.3845 0.4086 0.3966 0.3010 0.3116 0.5181 0.3278 0.2262 

W8 0.6847 0.6026 0.7107 0.6590 0.3811 0.4046 0.5346 0.3687 0.1757 

 
Table 2.  Regression results for 6-leaf corn yield vs INSEY in terms of R2. 

weight DGR DCR DCRE VGR VCR VCRE DVGR DVCR DVCRE 

W0 0.1204 

(NS) 

0.1825 

(NS) 

0.2133 0.0527 

(NS) 

0.0648 

(NS) 

0.0984 

(NS) 

0.2642 0.6961 0.5826 

W1 0.1554 

(NS) 

0.2495 0.2801 0.0641 

(NS) 

0.0568 

(NS) 

0.0822 

(NS) 

0.2441 0.6754 0.5813 

W8 0.3807 0.6132 0.6827 0.2620 0.0206 

(NS) 

0.0094 

(NS) 

0.1111 

(NS) 

0.6332 0.5493 

 
Table 3.  Regression results for 12-leaf corn in terms of R2 

weight DGR DCR DCRE VGR VCR VCRE DVGR DVCR DVCRE 

W0 0.0966 

(NS) 

0.1315 

(NS) 

0.1502 

(NS) 

0.0173 

(NS) 

0.0935 

(NS) 

0.1249 

(NS) 

0.2305 0.2117 0.3110 

W1 0.1008 

(NS) 

0.1142 

(NS) 

0.1308 

(NS) 

0.0121 

(NS) 

0.1190 

(NS) 

0.1450 

(NS) 

0.1775 0.1426 0.2281 

W8 0.0854 

(NS) 

0.6487 0.4413 0.3043 0.3690 0.3733 0.0337 

(NS) 

0.1022 0.1787 
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From Table 1 it can be seen that for each single site regression, the intensified weight W8 greatly 
helped improve the spring wheat regression models’ R2 performance compared to the 
unweighted regression, while W1 didn’t help much. The performance of the w8-weighted 
regressions for pooled two wheat sites, however, displayed inconsistency. Table 2 and Table 3 
revealed that for single-site corn yield prediction using either V6 or V12 sensing data, in most 
cases the unweighted and W1-weighted regression models were not statistically significant with 
very small R2 value. A main reason for this is that there was the extreme drought weather in the 
year of 2012. But in many cases, the W8-weighted regression models significantly outperformed 
their corresponding unweighted or W1-weighted regression models in that the models became 
significant and the R2 values greatly increased. Again, the W8-weighted regression models didn’t 
improve the pooled two corn sites regression performance; rather, the W8 weight decreased the 
R2 value.  
 
The poor performance of intensified weighted nonlinear regression for pooled data in this study 
probably owed to two facts. One may be that pooled data consisted of greater sample number 
enabling unweighted regression models to yield a more stable and significant relationship, and 
the other may be that there were that the differences in crop growth and in turn sensing 
differences between each two sites were too great, confounding the effect of weighting. 
Therefore developing a more versatile series of weights for use in weighted regression models 
for crop yield prediction is a still a challenge. However, the exercise strengthens our confidence 
that an unweighted approach to relating yield and INSEY is a valid approach to establishing 
yield prediction in spring wheat and corn at an early growth stage. 
 

Figure 1. Valleycity wheat GreenSeeker Red 

INSEY regression models comparison 

Figure 2. Durbin Corn Crop Circle Red edge 

INSEY regression models comparison 
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