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ABSTRACT 

Soil sampling is useful in agriculture for setting fertilizer application rates. High density soil 
samples can also be used for variable rate seeding and other precision agriculture 
applications. Half-acre grid soil samples were collected from 6 soybean fields, and 
phosphorous (P), potassium (K), and organic matter (OM) were measured. Each soil 
parameter was interpolated for each field, with terrain attributes as covariates, using two 
different methods: geographically weighted regression (GWR) and random forest (RF). 
Global error for each interpolation method was measured using root mean squared error 
(RMSE). In 14 out of 18 instances, GWR had lower RMSE, indicating that it had lower error 
in the interpolation. Random forest did occasionally out-perform GWR, but GWR had 
significantly lower error in the study overall (U=143, p=0.010) and is an appropriate method 
for interpolating grid soil samples at the field scale. There was not a pattern with regard to 
site or soil property for when RF out-performed GWR. The percentage of the field that was 
below the critical level was the same or higher for RF in 5 out of 6 fields, which combined 
with the high global error rate indicates that RF interpolation could over-apply fertilizer.  
 

 
INTRODUCTION 

Soil sampling is important for determining appropriate fertilizer rates for agriculture. 
Sampling methods usually fall into one of two categories: zone or grid. Interpolation is not 
necessary for zone sampling because the boundaries that each soil sample represents are defined 
before samples are collected. In grid sampling, the soil test value could be used as the fertility 
estimate for the entire grid cell, but many farmers and retailers interpolate the soil test results 
because application equipment can utilize soil fertility information at a higher resolution than the 
grid cell size of most sampling regimes. Interpolation turns the point data from soil test results into 
a surface of discrete values across the entire field at a higher resolution than was actually sampled. 
This study focused on P, K, and OM because they are soil properties commonly mapped for 
variable rate prescriptions. 

Interpolation accuracy can greatly impact how soil test results are interpreted because it can 
change whether the field is modeled as having adequate or inadequate fertility levels overall, and 
the spatial distribution of the soil fertility. If the interpolation underestimates the fertility levels of 
the field, more fertilizer will be applied. There is financial risk to under or over applying fertilizer, 
and significant environmental risk to over application. In the case of modeling OM, seeding rate 
prescriptions based off the interpolated map could be inaccurate. 
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One way to improve the accuracy of soil maps based on grid samples is incorporating elevation 
and other terrain derivatives as a covariate, and selecting an appropriate modeling method. 
Auxiliary information, such as elevation and slope, was useful for interpolating soil OM at a 
regional scale using geographically weighted regression and regression kriging. Geographically 
weighted regression (GWR) had lower root mean square error (RMSE) than regression kriging, 
indicating that the GWR interpolation had a higher accuracy (Wang et al., 2012). A similar 
regional-scale study was performed using elevation as a covariate to predict soil organic carbon at 
a regional scale. Among the methods GWR, multiple linear regression, and regression kriging, 
GWR had the lowest RMSE, indicating that it was the most accurate model (Mishra et al., 2010).  

At the regional scale, GWR has been successfully used to interpolate soil test values with 
terrain covariates, but it has not been fully investigated at the field scale. Geographically weighted 
regression is sensitive to multicollinearities between covariates at both a global and local scale 
(Wheeler and Tiefelsdorf, 2005). The scale-dependency of local multicollinearities may impact 
GWR performance at the field scale.  

Random forest (RF) is a machine learning algorithm that can be used to interpolate soil 
samples, and is a viable alternative to GWR due to its robustness against multicollinearities. 
Random forest creates an ensemble of decision trees using a random subset of observations and 
covariates, preventing overfitting issues that are common in other decision tree algorithms (Grimm 
et al., 2008; Guio Blanco et al., 2018). Another benefit of RF is that it ranks the importance of 
covariates. In a regional-scale soil organic matter mapping project, terrain attributes were the most 
important predictors of soil OM (Grimm et al., 2008).  

A potential downside of RF is its sensitivity to the distribution of the training data set. It should 
not be used to extrapolate outside of the range of covariates observed in the training data (Guio 
Blanco et al., 2018). In grid sampling where points have not been strategically placed to capture 
the complete range of covariates in the study area, this could limit RF performance.  

Comparing performance of GWR and RF at the field scale would improve interpolation of soil 
test results for fertilizer application and other variable rate technology. Therefore, the objectives 
of this study were to evaluate (1) whether GWR or RF were more accurate, as measured by global 
RMSE, at a field scale, and (2) whether interpolation method impacts P application rates. 

 
 

METHODS 
Half-acre grid soil samples were collected across 2 fields in 2017 and 4 fields in 2018. After 

locating each sample point using Google Maps on an LG G6 Android phone, three 20 cm deep, 
1.9 cm wide cores were collected within 10 feet of the identified point. Soil samples were air-dried 
in at ambient temperature and humidity. Samples were shipped to A&L Great Lakes Laboratories 
for soil test P, available K,, and OM analysis. Phosphorus and potassium was measured using 
Mehlich-3 extraction, OM was measured based on loss on ignition. To compare P results back to 
the critical level as published in the Tri-State Fertility guide, Bray-P extractant values were 
estimated using the conversion provided by OSU Extension (Ohio State University Extension, 
2018; Vitosh et al., 1995). 

Digital elevation models with 0.76 m resolution were downloaded from the Ohio 
Geographically Referenced Information Program database as TIFF files. SAGA GIS (2.3.2) was 
used to generate the following terrain derivatives: slope, aspect, topographic wetness index, and 
relative slope position (Conrad et al., 2015).  
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Geographically weighted regressions were calculated at the same resolution as the original 
elevation models using the Geographically Weighted Regression for Multiple Predictor Grids 
functionality in SAGA GIS. SAGA kernel defaults were used (Gaussian kernel shape and 
bandwidth determined by grid size). Actual and predicted values from each GWR were exported 
from SAGA as a shapefile, and the attribute table from this shapefile was copied into a CSV file 
for RMSE calculation in R. 

Terrain factors were measured at soil sampling locations using the “Add raster values to 
points” tool with the SAGA plugin for QGIS (2.18.19) (QGIS Core Development Team 2018). 
Soil test values and terrain factors were exported from QGIS as a CSV file for interpolation via 
random forest in R (3.4.2) (R Core Team 2017). Random forest models were built using the 
package randomForest with parameters ntree=500 and mtry=2 (Liaw and Wiener, 2002). Out-of-
bag predictions were used for RMSE calculation.  

Root mean square error was calculated using the package Metrics for both random forest and 
GWR interpolation (Hamner et al., 2018). To determine if RMSE was significantly different 
between the two interpolation methods, a pairwise Wilcox rank test was performed in R 
(alpha=0.05).  Beyond RMSE, the predicted values were also analyzed to see what percentage 
were below the phosphorous critical level for Ohio, 15 ppm Bray (Vitosh et al., 1995).  
 
 
RESULTS 

Overall, RMSE was lower for the GWR model in 14 out of 18 instances, indicating that global 
error for GWR was significantly lower than for RF (U=143, p=0.010). See Figure 1 for a visual 
representation of RMSE across each interpolation.  

 

 
 

Figure 1: Comparison of RMSE for P, K, and OM interpolation across 6 sites using geographically weighted 
regression and random forest 
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At 4 out of 6 sites, RF outperformed GWR for one soil property. In all other cases, GWR had 
lower RMSE. The RMSE was lower using GWR in all K interpolations, in 4 of 6 P interpolations, 
and 4 of 6 OM interpolations. RF outperformed GWR occasionally without regard to site or soil 
property, but GWR was overall the method with lower global error. GWR can be used to 
interpolate soil samples at the field scale. 

In 5 fields out of 6, the GWR interpolation would require the same amount of P fertilizer or 
less than the RF interpolation. A summary of the percentage of the field below the critical level as 
indicated by the interpolation is available in Table 1.  
 
Table 1: Summary of what percentage of each field is below the P critical level when interpolated using random 
forest or geographically weighted regression 
 

Site RF(%) GWR(%) 
18C3 63 47 
17W2 62 52 
18W1 17 3 
18S1 39 8 

18NW1 0 0 
17C1 44 45 

 
 
SUMMARY 

For high-density grid soil sampling, different interpolation methods produce different results. 
Geographically weighted regression had significantly lower global error rates overall and is a 
valuable method for field scale interpolation.  

When possible, it is preferable to calculate both RF and GWR interpolations and compare 
before selecting a method, since in some cases RF may give a lower global error. In instances 
where the spatial distribution of error is meaningful, such as when waterways are near fields, direct 
comparison using residual mapping would be a useful additional tool to determine an appropriate 
method. Overall, GWR was significantly better than RF for field scale interpolation and can be 
used to estimate soil fertility levels across fields with grid soil test results.  

Using error-prone interpolations can cause over- or under-application of P fertilizer. The GWR 
interpolation indicates that a lower P level would be needed than the RF interpolation. That 
combined with the high global error for the RF interpolation indicates that RF is likely over-
estimating fertilizer need, which could increase P runoff from fields. Higher fertilizer rates also 
cost farmers more money, without providing a yield benefit.  
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