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ABSTRACT 
In this study, the effectiveness of six types of FS methods from four categories 

(filter, wrapper, embedded, and hybrid) were compared. These FS algorithms chose 
relevant covariates from a set of 1049 environmental covariates for predicting five soil 
fertility properties in ten fields, in combination with ten different ML algorithms. The 
resulting model performance was compared by three different metrics (R2 of 10-fold cross 
validation (CV), robustness ratio (RR; developed in this study), and independent 
validation with Lin’s concordance correlation coefficient (IV-CCC)). Wrapper 
(BorutaShap) and embedded (Lasso-FS, Random forest-FS) methods with decision-tree 
based ML algorithms usually led to the optimal models. FS improved CV, RR, and IV-
CCC compared to the models built without FS for most fields and soil properties. Wrapper 
(BorutaShap) and embedded (Lasso-FS, Random forest-FS) methods usually led to the 
optimal models. The filter-based ANOVA-FS method mostly led to overfit models, 
especially for fields with smaller sample quantities. Decision-tree based models were 
usually part of the optimal combination of FS and ML. Considering RR helped identify 
optimal combinations of FS and ML that can improve the performance of DSM compared 
to models produced from full covariate stacks. FS can assist building better predictive soil 
models to create better digital soil maps, which in return can improve the farm 
management (e.g., fertilization, liming, and manuring). 

Introduction 
Digital soil mapping (DSM) has been widely used to map various soil properties 

and classes for the last few decades [1]. A strategy for DSM is the process of using 
predictive statistical models (e.g., machine learning (ML)), utilizing the relationships 
between georeferenced soil lab data and environmental predictors (aka covariates) [2]. 
Performance of ML relies heavily on the covariates used to represent true soil-landscape 
relationships [3]. Thus, covariate (aka feature) selection is an important aspect for DSM. 
Objectives of FS, as a data pre-processing strategy, include building simpler models, 
reducing the effect of the curse-of-dimensionality, and improving prediction performance 
[4]. Previous studies on FS in DSM have focused on less dynamic and less heavily 
managed soil properties (e.g., soil classes and soil organic matter) [5, 6, 7] compared to 
soil fertility properties (e.g., soil-test-P and -K). In our study, the effectiveness of six types 
of FS methods from four categories (filter, wrapper, embedded, and hybrid) were 
compared. These FS methods chose relevant covariates from a set of 1049 



 
 

environmental covariates for predicting five dynamic soil fertility properties in ten fields, in 
combination with ten different ML algorithms.  

Methodology 
Study Area and Input Datasets  
 

The study sites were ten agricultural fields located within a research farm near 
Ames, Iowa, USA. A total of 992 soil samples, collected from a depth of 0–15 cm 
between 2018 and 2020 were used in this study. All samples from each field (A-J) 
were collected on a single date (Figure 1). Samples were analyzed for nitrate-nitrogen 
(NO3−), soil-test phosphorus (P), soil-test potassium (K), buffer pH (BpH), soil organic 
matter (SOM). The covariate set included 1049 spatial variables from digital terrain 
analysis (DTA) and spectral bands of RS (aerial and satellite imagery). Same 
covariates were used as in Ferhatoglu and Miller [8]. All covariates were resampled 
to 3 m spatial resolution and spatially aligned. Environmental covariate values were 
then paired with soil lab data at the sampling locations and transferred to a csv format 
for FS process. Selected covariates were used in ML algorithms to create predictive 

soil models. 

Figure 1. The study fields (A–J). The size 
of the fields ranged from 0.4 ha to 13.1 
ha. Soil samples were collected from the 
fields with a grid-sampling design. 

Feature Selection and Modelling 

Six different FS methods were 
applied to identify relevant covariates: 
(1) Combined-filter-FS, (2) ANOVA-FS, 
(3) BorutaShap-FS, (4) Random Forest 
FS (RF-FS), (5) Lasso-FS, and (6) 
Hybrid-FS. Combined-filter-FS and 
ANOVA represented filter FS strategies 

while BorutaShap-FS, RF-FS, and Lasso-FS were embedded FS strategies. Hybrid-FS 
method represented hybrid FS strategy. More details about these FS methods can be 
found in in Ferhatoglu and Miller [8]. Using each covariates selected, ten ML algorithms 
(Lasso regressor, support vector regressor (SVR) with polynomial kernel, and multi-layer 
perceptron regressor (MLP), random forest (RF) regressor, extra-trees-regressor (ETR), 
CatBoost, AdaBoost, LightGBM, gradient boosting (GB), a voting regressor based on the 
nine ML algorithm above) from scikit-learn [9] with default parameters were used to model 
soil properties and compare FS methods by their interaction with ML algorithms. Voting 
regressor ranked predictions of the nine ML algorithms based on R2 score on the 
validation set (IV: 20%) to weight respective model predictions in the final prediction. 

 



 
 

 

Experimental Design & Evaluation 

Firstly, six FS methods were applied to the covariate stack for each target soil 
property and sample set (i.e., individual fields plus all fields combined. Full covariate stack 
was the control treatment. Models were then built from ten ML algorithms for each of 
those treatments, yielding 70 ML models per sample set and soil property. To simplify the 
evaluation process and interpretation of results, three stages of evaluation metrics were 
applied to identify the highest performing models. First, the models were evaluated by the 
R2 of 10-fold cross-validation (CV). Ten models with the highest CV-R2 score were 
selected for subsequent analysis based on a new metric introduced in this study to 
measure the robustness of the model (RR: R2 of 10-fold CV/ R2 of goodness-of-fit, which 
was  80% of samples). The five models exhibiting a likelihood to be robust were 
subsequently evaluated for prediction performance. The model with the highest CCC [10] 
based on IV was determined to be the optimal model for the respective field and soil 
property. 

Results 
Overall, FS methods consistently reduced the covariate stack to less than half of 

the original quantity. The largest to lowest reduction in covariate stack size was made by 
as follows:  BorutaShap-FS > Lasso-FS ≈ Hybrid-FS > ANOVA-FS, Combined-filter-FS ≈ 
RF-FS. Models built from covariate stacks reduced by FS mostly performed better in CV 
than those built without FS for all properties (Figure 2A). NO3− was particularly challenging 
for producing predictive models, where the median CV-R2 for No-FS and all FS methods 
was zero. Patterns between CV and RR were similar, which suggests stronger CV 
performance could be connected to RR performance (Figure 2A). In the second step of 
the evaluation, models from some FS methods remained competitive, while others were 
more often cut due to lower performance in terms of RR (data not shown). Although 
ANOVA-FS had the highest frequencies in the first step for K, BpH and NO3−, the 
difference between ANOVA-FS and other FS methods became smaller. Models produced 
from covariate stacks reduced by FS methods outperformed models built from covariate 
stacks without FS in most cases for independent validation (data not shown). IV-CCC 
scores for the final models were higher than full models for nine (SOM), eight (K), six (P), 
five (BpH), and all (NO3−) sample sets. BorutaShap-FS, ANOVA-FS, RF-FS, Lasso-FS 
were commonly optimal FS methods among the sample sets. Digital soil maps developed 
with the full covariate stack tended to be smoother than the maps created by using FS 
with exceptions in some fields (e.g., SOM map in field D) (Figure 2B). Despite differences 
observed in the evaluation of the models’ prediction performance, all maps produced from 
covariate stacks reduced by FS had similar patterns to their No-FS counterparts. Figure 
2B presents some examples comparing maps developed with and without FS. 
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Figure 2. (A)  Comparisons of performance for models produced from the different 
FS treatments, evaluated by (a) CV-R2 and (b) RR. Except for Combined-filter-FS, FS 
methods consistently outperformed the No-FS treatment. For the most part, evaluation of 
models by RR followed similar patterns to those of CV-R2, which suggests the higher CV-
R2 may also tend to have smaller differences between the goodness of fit R2 and CV-R2. 
(B)  Examples of maps created by the optimal models built from covariate stacks with (a) 
No-FS and (b) FS. Applying FS generally led to less smooth maps compared to maps 
created with full covariate stacks. However, there were exceptions such as the SOM map 
shown in these examples. Maps shown reflect soil fertility levels present on the sampling 
dates: NO3− for field F (8 June 2019), P for field C (12 July 2019), K for field H (25 June 
2018), BpH for field A (29 June 2020), and SOM for field D (16 July 2019). 

Conclusions 
Models produced from covariate stacks reduced by FS methods were less likely 

to be overfit and tended to have better performance in IV-CCC. Although there was no 
single optimal FS method among sample sets or soil properties, wrapper and embedded 
FS strategies produced the optimal model more frequently than the hybrid and filter FS 
strategies. Given the economic and environmental promise of precision agriculture, 
combined with the increasingly finer temporal resolution of remote sensing, there is an 
opportunity to apply these methods to provide farmers with better soil fertility maps. 
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