Proceedings
Authors
| Filter results120 paper(s) found. |
|---|
1. Educational Applications of Digitized Soil SurveysThe North Dakota Agricultural Experiment Station Soil Survey of McHenry County Organized Irrigation Districts is approaching publication and represents a first for soil survey in North Dakota. The decision was made to digitize the soil maps to facilitate acreage tabulations and improve methods of generating soil interpretations. While the digitization procedure is costly in terms of start-up labor (programming) and data entry, the benefits allow more flexibility than conventional soil surveys. The... |
2. Studies of Agricultural Effects on Groundwater Quality in KentuckySeveral small watersheds and tiled fields have been selected in Kentucky to assess the influence of agricultural practices on groundwater quality. Sites were selected to represent the dominant agricultural systems used in the most agriculturally important areas of the state. Within each study site, water samples from springs, wells, streams, or tile lines are being sampled monthly to monitor content of N03-N, atrazine. alachlor, and fecal bacteria. Although sampling will continue for at least another... |
3. Manure Brokerage in OhioIn Ohio there are several counties where annual manure production exceeds the requirements of all crops grown in the county. Poor distribution of this manure has created instances where soils have become overloaded with phosphorus, contributing to the phosphorus load of surface waters and creating the potential for long term release of phosphorus into states waters. Nitrogen also becomes an environmental concern as excess nutrient loads are placed on soils, nitrogen is found leaching through tile... |
4. Nitrogen Management for Profitability and Groundwater ProtectionSugarbeet production practices have changed drastically in the last two decades in Minnesota and North Dakota. Changes in grower payment systems mandated change to production of high sugar content low impurity level beets. Development, refinement and extensive use of the soil nitrate-N test in concert with the sugar company quality payment program resulted in greatly reduced N fertilizer use while increasing crop yield and quality.... |
5. Influence of Seed Placed Fertilizer on Corn, Soybean and Sunflower EmergenceSix phosphorous fertilizer materials were placed with corn, soybean and sunflower seed to determine their influence on seed injury and emergence. Fertilizer rates used were 0, 12.5, 25, 50 and 100 Ib/A P,O, as dry TSP (0-46-O), MAP (1 1-55- 0), DAP (18-46-0) or liquid 10-34-0, 7-21-7 and 9-18-9. Seed emergence ranged from 0 to 100% depending on crop, fertilizer rate and materials used. Corn was most tolerant of fertilizer injury while soybean was extremely sensitive with stand reduction with even... |
6. Planting Equipment for No-tillPlanters or drills have to cut and handle the residue, penetrate the soil to desired seeding depth, and establish proper seed-to-soil contact. Keeping these three items in mind, a producer can evaluate the strengths or weaknesses of any piece of planting equipment and make any adjustments or changes necessary to make no-till planting successful. Fortunately. most currently available planters and drills can be used for no-till with few, if any, modifications. In the early days of no-till, producers... |
7. Preparing for No-till Planting into CRP LandAs CRP contracts expire, many producers are considering bringing the land back into crop production. In order to conserve soil and water, and to keep the soil building benefits of idling the land for ten years, no-till is the best production system to use. Tillage will destroy the soil structure that has built up from the freeze-thaw and wetting-drying cycles. In addition, it will plant surface weed seeds and stimulate seeds which have been buried for the last ten years. Tillage will also fluff and... |
8. Site-Specific Research in North DakotaSite specific fertilizer application is currently being practiced in the Red River Valley of North Dakota/Minnesota A study has been initiated to determine sampling practices suitable for North Dakota producers using sitespecific farming both within and west of the valley. Two forty acre fields were sampled in 1994 in a 110 ft. grid, separating each sample into 0-6" and 6-24" subsamples. Smaller grid sizes were also obtained at 10 and 2 ft. grid distances in selected areas of each field. Nitrates,... |
9. Grid Sampling or Topography Sampling for Soil NutrientsSite-specific application of fertilizers uses field soil sampling for its information basis. Many fields are currently sampled using a grid approach. In North Dakota, examination of grid sampling showed nitrate-N to follow topographic patterns in a field, allowing the possibility of less intensive sampling for N. Reviewing previous grid sampling work in Illinois, some soil properties may be associated with landscape features, including nitrate-N in the surface 6 inches and soil pH. However, Illinois... |
10. Site-Specific Prediction of Soybean Nitrogen ContributionsSoybean has long been recognized for its nitrogen (N) contributions and yield enhancing effects in crop sequences. Soybean N credits in the Midwest range fiom 20 to 40 Ib of Nlacre (Kurtz et al., 1984). Several Midwestern states recommend a legume credit of 40 Ib of Nlacre following an average crop of soybean. Current Wisconsin recommendations suggest a reduction in nitrogen fertilizer rates for corn following soybean of 1 Ib N hushel of soybean yield up to a maximum credit of 40 Ib Nacre (Kelling... |
11. Spring Wheat Response to Copper Fertilization in North DakotaTraditionally, copper responses have been tllought to be associated with organic soils. However, recent Canadian research has found that copper responses by wheat are possible on low organic matter, coarse textured soils. A yield response to copper in spring wheat was found in North Dakota on a coarse textured, low organic matter soil. Yield responses were not found in similar copper soil test levels of higher organic matter, heavier textured soils. A two-tiered recommendation strategy is suggested... |
12. Challenges for making intensive soil sampling and VRT Pay. Ongoing Iowa Studies with PhosphorusSoil fertility evaluation and management can be greatly improved with the use of precision agriculture technologies. Differential global positioning systems @GPS), yield monitors, various forms of remote sensing, geographical information system (GIs) computer software, and variable rate technologies are available for use to producers. Intensive soil sampling, crop scouting, and other practices complete the new technological package. Soil testing is a diagnostic tool especially adapted for site-specific... |
13. Evaluation of Nitrogen Management Practices in No-till Corn ProductionExperiments were conducted fiom 1995 to 1998 at the Dixon Springs Agricultural Center of the University of Illinois and the Belleville Research Center of Southern Illinois University to evaluate agronomically and economically several nitrogen (N) management options, including the use of the urease inhibitor Agrotaii, in no-till corn production. Compared in these studies were N sources (urea, UAN, ammonium nitrate, and anhydrous ammonia), placement (dribble vs. broadcast for surface-applied N and... |
14. Soil Fertility Trends in a Long Term Crop Rotataion-Soil Fertility TrialPenn State soil test recommendations are based on fertilizing for crop response at soil test levels below the critical level for response, maintenance fertilization based on expected crop removal in the optimum range just above the critical level, and finally no fertilizer recommended in the high range. Using a sufficiency level approach, a soil that was at the critical level would have a zero recommendation, however this zero recommendation would not be valid for 3 or 4 years until a new soil test... |
15. Soybean Chlorosis in North Dakota- Causes, Severity and Possible SolutionsSoybean acres continue to increase in northwestern Minnesota and North Dakota in spite of severe problems with iron chlorosis in some years. Soybeans often turn yellow within a few weeks of emergence and remain yellow for up to 8 weeks before plants green up and mature. Iron chlorosis tolerant soybeans available today are somewhat effective in reducing chlorotic acreage, but are not tolerant enough to counteract the soil conditions in this area. Several researchers have found that iron chlorosis... |
16. Nitrogen Availability, Time of Release and Movement in RotationsPrevious studies have found that N is released through the decomposition of sugarbeet tops (Moraghan and Smith, 1996: Reitmeier et a]., 1999). There is also evidence that N credits may be justified following other broadleaf crops, such as potato and sunflower. This evidence follows work by Vanotti and Bundy (1995) and Bundy et al. (1 993) suggesting that N credits from annual legumes are provided not by decomposition ofthe roots or release ofN directly into the soil from the roots as some might assume,... |
17. Adjusting N Recommendations Based on a Previously Grown CropNitrogen recommendations in North Dakota are based on a yield goal multiplied from some empirically derived factor in a linear formula. There are a three adjustments to the N recommendations that result form these formulas (Franzen and Cihacek, 1996). They are the soil test nitrate-N to some depth, a sampling date adjustment ifthe sampling was conducted in the fall prior to September 15, and a previous crop credit. Two of these three adjustments are based on some knowledge regarding mineralization... |
18. Corn and Soybean Response to Potassium Fertilization and PlacementI\ncreased adoption of conservation tillage, evidence of large within-field nutrient variability, and an apparent increase in the Frequency of crop potassium (K) deficiency symptoms in Iowa and other states have prompted questions about the effectiveness of current soil-test K interpretations and fertilizer recommendations. These questions relate to fertilizer placement and management of within-field nutrient variability. Broadcast placements are less costly than banded placements but they seem inefficient... |
19. Detecting Spatially Variable Corn Nitrogen Needs Using Green Reflectance from 35MM PhotographsRising fertilizer costs and environmental concerns are reasons producers are looking to decrease nitrogen (N) fertilizer rates. This study investigated the use of relative green reflectance fiom 35 rnrn aerial photographs to detect spatially variable corn [Zea mays L.] N needs for developing variable rate fertilizer maps. Photographs were taken at three different growth stages (V7, V11, R3) at altitudes from 3,000 to 5,500 fi for two Missouri fields representing alluvial and deep loess soil types.... |
20. Previous Management Impacts on Soil Phosphorus LevelsThe Homestead Acts of the early 19th century across many areas of the United States resulted in the formation of 65 ha (160 acre) farms. The areas where livestock were concentrated on these farms consisted of a small portion of the 65 ha. As farms have become larger, many of the original farm building sites have been abandoned. These abandoned farmsteads still affect management decisions today. The objectives of this study are to show the visual and statistical relationships between both existing... |
21. Site-Specific Management of Iron Deficiency in CornThe addition of FeS04mH20 in the seed row increases corn (Zea mays L.) yield in areas with Fe deficiency-induced chlorosis. Our objectives were to determine the correct application rate of FeS04.H20 for irrigated corn, identi9 the spatial distribution of Fe deficiency, and alleviate deficiency symptoms with targeted FeS04.H20 applications. Eleven site-years were selected for small-plot studies in western Kansas. At these fields, soil CaC03 content in chlorotic or problematic deficient areas of the... |
22. Site-Specific Manure Application Effects on Corn Yield and N StatusManure, a renewable resource, is an excellent source of nutrients that can be substituted for synthetic types of fertilizers. The organic matter in manure can enhance the physical and chemical properties of soils, especially infertile soils, as these soils typically contain low levels of organic matter and nutrients, and have low water holding capacities. The objective of this study was to evaluate the ability of manure application for improving crop yield and N status in less productive areas within... |
23. A Case for the use of Limestone in North DakotaFarmers in North Dakota have long believed that nearly all of the cultivated land in the state was alkaline in pH. A recent survey of the state revealed that between 27% and 50% of the fields tested below pH 7, depending on landscape position, with about 17% of the state with pH less than 6.5. In site-specific studies in fields with dominant pH above 7, nearly all fields contained at least one area with pH below 7. Herbicide carryover studies have shown that areas of even slightly acid pH can result... |
24. A Crop-Based Approach for In-Season N Management of CornOver-application of nitrogen (N) fertilizer on corn has resulted in elevated levels of N in ground and surface waters. A major factor contributing to decreased N use efficiency and environmental contamination for traditional corn N management schemes is routine pre-season application of large doses of N before the crop can effectively utilize this N. Our long-term research goal is to reduce these over-applications by using remote sensing to direct fertilizer only to areas needing N at times when... |
25. Fertilizer and Manure Management Comparisons for Corn-Soybean Rotataions in MinnesotaA study was designed to evaluate the impact of P sources (fertilizer and manure), nutrient application methods (broadcast and subsurface bands), P rates (crop removal and twice crop removal), and tillage systems (no-till and conventional) on corn-soybean response. Results to date show higher yields using manure as compared to fertilizer as the P source. This could be attributed to a higher rate of P being applied using the manure. No-till systems measured greater yields in 1999 and 2000, primarily... |
26. Nitrate Leaching Characteristics for Various Nitrogen Management Strategies on Irrigated CornEfficient use of nitrogen (N) fertilizer for corn production is important for maximizing economic return to the producer and minimizing NO3 leaching to groundwater. This is especially important on irrigated, sandy soils due to the high infiltration and saturated conductivity and potential risk to the local water supplies. This study is being conducted to quantifL the NO3 leaching potential in the irrigated sands along Kansas' waterways under current and alternative N and water management strategies... |
27. A Weighted Classified Method for Nitrogen Zone DelineationEven though zone management in precision agriculture is a relatively new science. extensive research has been conducted on the best predictors for determining optimal nitrogen management zones in site-specific farming (Bausch et al., 2002; Fleming and Buchleiter, 2002; Franzen and Nanna, 2002, Hendrickson and Han, 2000; Lund et al.. 2002: Stenger et a].. 2002). Different techniques. varying from cluster analysis (Jaynes et al.. 2003; Kitchen et al., 2002: Ralston et al.. 2002) to neural networks... |
28. Comparison of Nitrogen Management Zone Delineation MethodsAn alternative to dense grid soil sampling for delineating residual soil N levels or N availability is a zone sampling approach. The zone approach assumes that soil N patterns are logically linked to some inherent causal effect, either natural or man-made. A number of delineation methods have been examined. including apparent soil EC (Kitchen et al.. 1999). yield mapping (Taylor and Whitney. 2001: Diker et al.. 2002), topography (Franzen et al.. 1998), aerial imagery (Williams et al., 2002 Sripada... |
29. Manganese Fertilizer Antagonism of Glyphosphate EfficacyMichigan soybean producers have observed antagonism of glyphosate efficacy in tank mixtures with foliar manganese (Mn) fertilizers. The objectives of this study were to (1) evaluate four Mn fertilizer formulations for their effect on glyphosate activity. (2) evaluate the effect of Mn fertilizer application timing on glyphosate activity, (3) evaluate the efficacy of three adjuvants in overcoming the Mn fertilizer antagonism of glyphosate. (4) determine the spray solution ratio of h4n2' and glyphosate... |
30. Assessing the Illinois N Test as a Decision Management Tool for SugarbeetThe Illinois nitrogen soil test (INST) was developed to detect sites where corn is nonresponsive to nitrogen (N) fertilization. Nitrogen managernent is critical for sugarbeet production because sucrose content can be compromised with excessive applications of N. The objective of this study was to assess the ability of the INST and other parameters (OM, total N, and NO3'-N) to predict N responsiveness in sugarbeet. Yield and RWSA response to N was assessed at five sites each in 2002 and 2003. INST... |
31. Evaluation of Fertilizer Management in Strip-till and No-till Corn ProductionStrip-tillage for corn production may have advantages over no-till. particularly in areas with heavy soils andlor high rainfall during spring months. With these conditions in no-till systems. planting delays and/or slow, uneven emergence are common. Strip-tillage creates a narrow tilled area for the seedbed ivhile maintaining the intcr-row residue cover, allowing for the erosion protection associated with no-till, yet providing an area in the row where the soil will dry out and warm up earlier in... |
32. Fertilizer Placement in Fall Strip TillageFall strip-tillage potentially provides an opportunity to increase conservation-till corn yields while sirnplifylng corn planters by minimizing the need for multiple coulters and application of relatively high rates of starter-band fertilizer associated with no-till. However. little is known about the relative efficiency of P and K application using fall strip-till systems co~npared to when starter-band applied in no-till systems. The objectives of the research reported in this study were to evaluate... |
33. Flax Fertility Recommendation Changes in North DakotaFlax has traditionally been grown in North Dakota since early settle~nent by European immigrants. The varieties of flax have been gro~vn for their oil content more than for fiber. Previous recommendations for N and P have becn based on yield goal and soil test level. A review of j~revious research in the region and nctv research on the role of mychorrhizae on P nutrition has resulted in dropping the P recommcndation. Due to the hazard of lodging from over-application of N from unreasonably high... |
34. Induced Manganese Deficiency in GM SoybeansGlyphosate resistance in soybean and corn reduced manganese uptake and physiological efficiency. Applicatior~ of glyphosate immobilized manganese applied before, concurrent with, or within 6-8 days after the glyphosatc event. Inorganic sources of manganese (Cl, CO,, SO,) tank-mixed with gly-phosate were antagonistic and reduced herbicidal efficacy: ho~vever, antagonism was significantly influenced by glypllosate fonnulation. Glyphosate root exudates and plant deconlposition products can alter the... |
35. No-till Soybean Responses to Residual Fertilizer K and Site-Specific Exchangeable K on Variable Soilst Because meeting the potassiuln (K) requirements of no-till soybean is more dependent on soil properties near the soil surface than it is in conventional soybean production, management of both tillage systems and K fertilizer application in the preceding corn crop may also be critical for the subsequent no-till soybean crop. Both stratification and spatial variability in soil exchangeable K may constrain the achievement of satisfactory yields and consistent seed quality in no-till soybean. The objective... |
36. Relationship of Mehlich-3 ICP and Mehlich-3 Colorimetric Phosphorus Determinations with the Bray-P1 ExtractantThe Bray P1 extractant has traditionally been the common extractant used for soil testing in the Midwest and Great Plains. while the Olsen P tests has been the dominant phosphorus (P) extractant used in many westem states. The use of the Meldich-3 extractant for determining soil test P in private and state operated soil test laborato~ies becotne more commonplace in recent years. The ability to extract multiple elements is a 11lajor advantage of the Mehlich-3 test. While the Mehlich-3 test is often... |
37. Soil Carbon and Nitrogen Distribution and Gaseous Flux Due to Landscape Position and Temperate Alley-Cropping Practices in an Agricultural WatershedSoil NzO and COz efflux can be stimulated by agricultural practices whlch may contribute to an enhanced global warming effect. However, the efflux of these two gases in response to landscape position and soil conservation management practices such as contour strips in a temperate agoforestry alley cropping system has not been extensively studied. The objective of this study was to assess the effects of alley cropping and landscape position on soil total organic C and total N distribution and N20... |
38. Zone Delineation for Nitrogen ManagementManaging nitrogen through zone soil sampling has been shown effective in revealing residual soil nitrate patterns in North Dakota. Zone delineation has been constructed using several types of data, including yield maps, remote imagery, topography and soil EC sensor data. A study was conducted in North Dakota, Montana and Minnesota to evaluate zone delineation methods. Across the region, yield frequency maps, topography, remote inlagery and soil EC data were effective in helping to construct zones.... |
39. Evaluation of the Illinois Soil Nitrogen Test in the North Central RegionData from 96 locations across the North Central Region was complied to evaluate the usefulness of the Illinois soil nitrogen test (ISNT) in identifying fields where corn will not respond to additional N fertilizer and predicting the yield optimizing N rate (YONR) for each field. The ISNT could not accurately predict non-responsive sites, nor could it predict YONR. Sub-setting the data based on soil drainage class and previous crop did not improve the predictive capability of the ISNT. The ISNT was... |
40. Swine Manure Applications for Soybean Production - Environnmental and Pathological ImplicationsSoybeans are leguminous plant sp ecies capable of fixing nitrogen (N) from the atmosphere to support their growth and development. Despite th e fact that soybeans can fix their own N, in a soil environment rich in inorgani c N they will scavenge for available N decreasing the level of root nodulation (Schmidt et al., 2000; Hester man and Isleib, 1991). Studies conducted to measure the impact of N fertilization of soybean s reveals that crop response to commercial N fertilizer does not result in increased... |
41. Nitrogen Recalibration for Wheat in North DakotaThe general formula for determining N fertilizer ra te in North Dakota for about thirty-five years has been N-rate = (2.5 X Yield Potential (or Yield G oal) less credits from previous crops and soil test nitrate-N from a 2-foot soil core composite. Historically high fertilizer N costs and the ability to fertilize within fiel ds rather than whole field N management has resulted in a reexamination of N calibration data, and an effort to expand the modern N calibration database with new field experiments.... |
42. Nitrogen Recalibration for Wheat in North DakotaThe rise in grain prices and fertilizer costs, as well as the need for more soil-specific recommendations has spurred recent research into N response of wheat in North Dakota. Combining data from 1970 to 1990, together with recent studies has shown that new recommendations are in order. There is a rela tionship of wheat yield to available N. The relationship is better when residual soil nitrate is considered. Different areas of the state partition out with different response curves. Using the 'return... |
43. Weed Control Timing Effects on Corn Yield Response to NitrogenNitrogen (N) rate guidelines for corn are under c ontinued scrutiny to maximize N use efficiency in order to minimize potential N losses to th e environment while maximizing economic returns to growers, especially with significant N fertilizer price increases in recent years. In-season crop stress can potentially affect corn N needs for optimum production. Recently, postemergence weed control has become more common with th e availability of glyphosate resistant corn hybrids. Delaying weed control... |
44. Use Of Corn Height To Improve The Relationship Between Active Optical Sensor Readings And Yield EstimatesPre-season and early in-season loss of N continues to be a problem in corn (Zea mays, L.). One method to improve nitrogen use efficiency is to fertilize based on in-season crop foliage sensors. The objective of this study was to evaluate two different ground-based, active-optical sensors and explore the use of corn height with sensor readings for improved relationship with corn yield. Two different ground-based active-optical sensors (Greenseeker�, Trimble, Sunnydale, CA; and Holland Crop Circle... |
45. Nitrogen Rate Revisions for Corn in North DakotaNitrogen rates in North Dakota have been based on a yield-goal or yield-potential formula for over forty years. The currently published formula (Franzen, 2010) is: Recommended N rate = (Yield Potential, bushels per acre) X 1.2 less N credits from previous crops and soil test nitrate to 2 feet in depth. A yield-based strategy was practical when N costs were relatively low and yields in North Dakota were at most 100 bushels per acre. However, due to improved germplasm developed at North Dakota State... |
46. Minimizing Nitrate Loss from Manure-amended Wisconsin Sandy SoilsThe impact of dairy manure application on nitrate leaching was evaluated at two sites with no manure history. Manure treatment (separated-solid manure, separated-liquid manure, separated- liquid manure plus a nitrification inhibitor, and two treatments with no manure) was the main plot. Each manured plot was split into six subplots with three receiving a single sidedress fertilizer application of 0, 56, or 112 kg N ha -1 while the others had two sidedress applications totaling 112 kg N ha-1 with... |
47. Can Soil Information Better Inform Canopy Sensor Algorithms for Corn?Corn production is often limited by the loss of nitrogen (N) due to leaching, volatilization and denitrification. The use of canopy sensors for making in-season N fertilizer applications has been proven effective in matching plant N requirements with periods of rapid N uptake (V7-V11), reducing the amount of N lost to these processes. However, N recommendation algorithms used in conjunction with canopy sensor measurements have not proven accurate in many fields of the U.S. Cornbelt, resulting in... , N.R. Kitchen, J. Camberato, P.R. Carter, R.B. Ferguson, F.G. Fernandez, D.W. Franzen, F.G. Fernandez, E.D. Nafziger, C.J. Ransom, , J. Shanahan, G.M. Bean |
48. Better Maize Response to Optimal Fertilizer PlacementIncreasing trends in corn (Zea mays L.) yields require greater levels of applied nutrients per acre to maintain or increase yields; thus, we need to rethink how to best supply a crops⤙ required nutrients. One significant challenge associated with applying more fertilizer to support greater yields has been the negative environmental effects of increased levels of some nutrients, such as phosphorus. Fertilizer application technologies such as banding the fertilizer below the plant increases... |
49. Corn Nitrogen Evaluation in South DakotaCurrent Nitrogen (N) recommendations for corn in South Dakota use an N rate calculator approach (yield goal x 1.2 ⤓ soil test Nitrate-N (0-2 ft) ⤓ legume credits ⤓ other credits such as manure application or N in starter fertilizers + 30 lbs N/a for no-till). The N coefficient has been modified in the past from 1.45 in 1975, to 1.3 in 1982 and currently 1.2 determined 1991. The N coefficient is in dire need of re-evaluation because... A. Bly, S. Berg, P. Sexton, R. Gelderman |
50. Crop Sensors as In-season Nitrogen Management Tool for Winter Wheat in WisconsinIn Wisconsin, current winter wheat (Triticum aestivum L.) nitrogen (N) rate guidelines are determined by soil type, previous crop, and pre-plant soil nitrate test (PPNT). Nitrogen management may be improved through site-specific assessments of N need in the spring, offering a more effective use of top-dressed N. The study objective was to determine if crop reflectance measurements could be used to determine optimal in-season N rates on silt loam soils in eastern Wisconsin. This study evaluated the... |
51. Evaluation of Crop Canopy Sensors as a Tool for Soybean Research and ProductionDetermining the variables that consistently increase yields in soybean  [Glycine max (L.) Merr.] continues to challenge researchers, agronomists and growers alike. Crop canopy sensors have emerged as a technology used in other cropping systems to monitor and manage agricultural inputs. The sensors measure reflectance in selected wavebands that are used to calculate vegetation indices that relate to unique leaf or canopy characteristics. The objectives of this study were to determine if a commercially... |
52. Roto and Shoot Biomass and Nutrient Composition in a Winter Rye Cover CropNitrogen loss from applied fertilizer can be a significant environmental quality issue if NO 3 moves to surface or ground water. The Iowa nutrient reduction strategy science assessment identified winter cereal rye (Secale cereal L.) cover crop as a practice that can significantly reduce N and P loss (41% NO 3-N and 21% P reduction) from corn (Zea mays L.) and soybean [Glycine max. (L.) Merr.] fields. Cereal rye, when used as a cover crop, through its fibrous root system is able to explore the soil... |
53. Soybean and Corn Yield Response to Fertilizar Placement and Tillage SystemNutrient availability and, consequently, yields can be strongly influenced by tillage system and fertilizer placement. Also, different genotypes and rooting systems can affect nutrient uptake and plant growth. The objective of this study was to evaluate fertilizer placement and tillage system effects on yields in soybean and corn with different varieties/hybrids. The experiment was established in two locations in Kansas and the experimental design was a randomized complete block with a split-plot.... |
54. Nitrogen and Phosphorus Recalibration for Sunflower in the Northern Great PlainsSunflower producers in the northern Great Plains states of North Dakota, South Dakota, and Minnesota are presently directed to N and P recommendations that originate from research performed in the late 1960s and early 1970s. These three states alone produce more than 80% of the sunflowers in the United States on a yearly basis (USDA-NASS, 2015). The current general formulas determining N and P fertilizer rate in these top-producing states are equivalent. The N recommendation is represented here by... |
55. Nitrogen and Harvest Impact on Biomass Yield of Perennial Warm-season GrassesUncertainties of the supply of fossil fuels from finite resources and the negative environmental impacts of their use are the two major driving forces for the search of alternative burning fuels. Perennial warm-season grasses have drawn interest as bioenergy feedstocks due to the high yielding capacity with minimal amounts of inputs under a wide range of geography, and the capability to produce multiple environmental benefits. Nitrogen (N) fertility and harvest management are considered as critical... |
56. North Dakota Corn Recommendations for Preplant and Sensor Directed Sidedress NNitrogen rates for preplant N application in North Dakota have been drastically revised. The former yield-based strategy may have served when N costs were stable and relatively low and high yields in North Dakota were rarely higher than 100 bushels per acre. Due to improved germplasm developed at North Dakota State University and other northern Land-Grant Universities with favorable adaptation to North Dakota climate and soil conditions corn has become one of the most planted crops in the state.... |
57. Improving Alfalfa Production in Wisconsin with Sulfur and Potassium FertilizerThe longevity and quality of an alfalfa stand is an essential component for Wisconsin�s dairy rotations. A study was developed to determine the effects of sulfur and potassium applications on the growth and development of alfalfa stands. The objectives of this study were to determine the effect of i) S fertilizer rate, timing and form on alfalfa yield, ii) recommended or no K fertilizer application on alfalfa yield on soils testing optimum or low for K, and iii) S and K application on soil test... |
58. Variability of Soil Test Potassium in Space and TimePotassium soil test may be highly variable within fields. In the western part of the North Central Region, where the history of K fert ilization is marked by low rates of K fertilizer and fields where K has never been applie d, natural variability of K is governed by clay content and landscape position. In areas where K fertilization has been high, man-made variability is more common. Man-made variability may be experienced as differences in historic rates within fields merged over years of ownership... |
59. Slow-Release Nitrogen Fertilizers and Nitrogen Additives for Field CropsNitrogen management continues to be difficult due to transformations of nitrogen fertilizers that are possible when applied to soil and the uncertainties of weather (Cabrera et al., 2008). Nitrogen fertilizer in the form of urea is subject to ammonia volatilization through the activity of the urease enzyme found ubiquitously in soil (Kissel et al., 2008). Nitrate fertilizer is subject to leaching (Randall et al., 2008) or denitrification (Coyne, 2008) depending on the water content of the soil and... |
60. Effects of Sampling Time, Soil Moisture Content, and Extractant on Soil Test Potassium LevelsAn accurate prediction of plant-available pota ssium (K) requires a thorough understanding of the mechanisms that might impact soil test K. A three year field study was developed to determine relationships between soil test potassium (STK) levels and time of soil sampling, soil moisture content, and extractant. Five field sites were established in 2006 throughout Wisconsin at Arlington, Hancock, Marshfield, and Lancaster Agricultural Resear ch Stations, and a private farm in Fond du Lac county each... |
61. Interaction of Soil Applied Herbicides with Soil pHManagement of soil pH is important in enhancing the availability of certain plant nutrients and in minimizing toxic levels of other elements to crops. However, the reaction of herbicides with soils under varying soil pH levels can affect both crop growth and herbicide performance. Soil pH affects herbicide performance in several ways. When crops are under stress due to nutrient imbalance from unfavorable soil pH levels, application of certain herbicides may increase risk of crop injury. When soil... |
62. Methods and Limitations of Zone Sampling Using Topography as a Logical BasisTwo forty-acre fields in North Dakota were sampled in a 110 foot grid. Each field was measured for elevation in the same 110 foot grid. Topographic sampling zones were identified in each field and a correlation of the sampling based on these zones was compared to the correlation values from a 220 foot grid. Nitrate-N and the 220 foot grid were both correlated to the 110 foot sampling values for nitrate-N and P. A map of field nitrate-N levels from topography sampling compared to the 220 foot grid... |
63. Nitrogen in the Mississippi River Basin- Sources and Factors Affecting Loss of Nitrate to the RiverNitrogen (N) is a naturally occurring element that is essential to plant growth and crop production. In a soil system, nitrate-N is continually supplied through mineralization of soil organic matter. Other sources of N include fertilizers, animal manures, municipal sewage wastes, agricultural and industrial wastes, atmospheric deposition. and dinitrogen fixation, all of which either occur as nitrate-N or can be converted to nitrate-N through mineralization and nitrification. ... |
64. Is There a Better Way to Fertilize Corn with Potassium?Potassium (K) is among the most abundantly needed plant nutrients. A 15.7 Mg ha-1 (250 bushel acre-1) corn (Zea mays L.) crop accumulates anywhere from 168-225 kg K2O ha-1 (150-200lbs K2O acre-1) over the course of a growing season, and according to the IPNI Soil Test Summary (2015), about 37% of Illinois’ soil tests are deemed as deficient for K. The objectives of this study were to investigate various methods of... S. Foxhoven, F. Below |
65. Cover Crops Influence Soil Health and Nutrient Cycling in a Multi-Location Study in South DakotaSoil without living roots potentially loses mobile nutrients and retains excess water. Unprotected soil degradation and erosion enable the loss of carbon and nutrient rich top soil. Cover crops provide armor for the soil protecting from carbon and nutrient loss. Cover crop blends may influence soil health parameters and nutrient cycling. This multi-locational study depicts the influence of cover crop species blends with varying grass and broadleaf concentrations on established soil-health indicators... D. Sanyal, J. Wolthuizen, D. Karki, J. Clark, A. Bly |
66. Do cover crops improve soil health and enhance nutrient availability to cash crops?Bare soils are prone to erosion and lose soluble nutrients. Cover crops provide protection to the soil against erosion and nutrient loss. We hypothesized that the cover crops should uptake available nutrients from the soils in the fall when there is no cash crop, assimilate the nutrients in their tissues, and in the following spring, should release the nutrients back to the soil during the next cash crop growing season. In our study, we are quantifying the nutrients taken up by the cover crops... D. Sanyal, A. Rahhal, H. Bielenberg, J. Wolthuizen, J. Clark, A. Bly |
67. No-till and Cover Crops Influence Soil Health and Nitrogen Rate and Timing Recommendations: Early ResultsThe idea of improving soil health has become increasingly more talked about by researchers, agronomists, and farmers in the past five years. Management practices such as no- or reduced-tillage and planting cover crops are recommended to improve soil health because of their potential to improve organic matter and soil structure leading to a greater capacity to hold water and nutrients needed for plant growth. Research in South Dakota has been occurring these past two years to determine the influence... J.D. Clark, A. Bly, D. Karki, D. Sanyal, J. Wolthuizen, P. Kovacs |
68. Impact of sulfur and its interaction with N rates on wheat and barley in North Dakota and Western MinnesotaEffects of S, N, and their interactions were assessed on grain yields and protein of spring wheat and barley, across eight site years in Western Minnesota (MN), and ten site years (hereafter, sites) in North Dakota (ND) from 2015 to 2019. The studies were to determine if S improves yields and protein in wheat, and if the effects were dependent on N rates. Treatments included all combinations of five N rates of N (0, 60, 120, 180, and 240 lbs/ac) and three rates of S (0, 10, 20 lbs/ac) in MN. In... J.M. Teboh, S. Yuja, B.G. Schatz, G. Pradhan |
69. Nitrogen Source and Timing Effects on CornThe 4R’s of nutrient management call for the right source, applied at right time, at the right rate at the right placement. Producers in South Dakota ask when the correct time to apply nitrogen fertilizers. Mean annual precipitation in the major South Dakota corn growing areas ranges from 16 to 26 inches. This is a relatively dry climate compared to other major corn growing regions and the effect of nitrogen timing might not be as important. Therefore, a research question that challenges... A. Bly, S. Berg, D. Karki |
70. Can an Estimate of Mineralizable Nitrogen Improve Nitrogen Sufficiency Indexes?Combining the anaerobic potentially mineralizable N (PMNan) test with the pre-plant (PPNT) and pre-sidedress (PSNT) nitrate tests may improve N fertilizer guidelines for corn (Zea mays L.). Forty-nine corn N response experiments were conducted across eight states in the US Midwest (Illinois, Indiana, Iowa, Minnesota, Missouri, Nebraska, North Dakota, and Wisconsin) from 2014-2016. These studies were used to evaluate the effect of combining PMNan values from different soil sampling timings... J. Clark |
71. Performance of Grain Oats at Different Nitrogen Regimes when Grown with and without Plant Growth Regulator (PGR)Among small grains grown in the South Dakota (SD), oat is considered the most susceptible to lodging which can result to significant yield loss due to harvest difficulty. Although current South Dakota State University (updated 2005) recommends 1.3 pounds nitrate N per bushel of oats (minus soil test N and legume credit), producers have been using lesser than the SD recommended rate to avoid lodging. This study was initiated in 2016- i) to evaluate the response of oat grain yield at various nitrogen... D. Karki, A. Bly |
72. Cover Crop and Nitrogen Fertilizer Rate Effects on Mitigating Soil Nitrate Leaching in Irrigated Sandy Soils in Corn and Soybean ProductionCoarse textured soils are very productive when supplemented with irrigation and nitrogen (N); however, they are susceptible to nitrate (NO3–N) leaching. Nitrate leaching not only reduces fertilizer efficiency but has costly environmental impacts to the groundwater supply. The majority of NO3–N loss occurs in the fall and spring or when nutrient and water uptake from corn (Zea mays L.) and soybean (Glycine max Merr. L.) is limited but precipitation is frequent.... N. Ricks, F. Fernandez |
73. Manure and Fertilizer Management Influence on Soil Nutrient Levels and Grain Yields in Eastern South Dakota from 2003 to 2014Concentrated animal feeding operations (CAFOs) are required to hold a manure management permit in South Dakota. The permit encompasses available nutrients from manure, crop nutrient use and removal, soil test nitrate-N, and phosphorus and land availability for approved nutrient application rates. The management plan determines if nitrogen or phosphorus based manure application rates are used. Most CAFO’s start out following the nitrogen based plan as soil test phosphorus (P) levels... A. Bly, S. Berg, R. Gelderman, B. Rops, P. Sexton, C. Morris |
74. Relating Soil Properties to Spatial Variation of Phosphorus Critical LevelVariable rate (VR) fertilizer application has increased with proliferation of VR capable equipment. Current recommendations for VR phosphorus (P) application often assume that critical level is constant across a field adjusting only for spatial variation of soil P concentration. We conducted this study to determine whether variation in critical level, identified by relative yield of unfertilized to fertilized plots, could be explained by soil properties. In 2016, plots, measuring... J. Bowen |
75. Fertilizer management and cover crop effects on phosphorus use efficiency, environmental efficiency and crop yieldPhosphorus loss from agricultural production is a significant contributor to the degradation and contamination of surface and ground waters. To help protect these waters, it is vital to maximize agronomic and environmental efficiency of phosphorus in the cropping system. The objective of this study was to quantify the effects of cover crops and different phosphorus fertilizer management practices on nutrient use efficiency, environmental efficiency and yield in a no-tillage corn-soybean rotation.... R. Carver, N. Nelson, G. Kluitenberg, K. Roozeboom, P. Tomlinson |
76. Do Split-Nitrogen Applications in the Midwest Affect Corn Nitrogen Uptake and Grain Yield?It is hypothesized that split-nitrogen (N) relative to single near-planting applications improve corn (Zea mays L.) grain yield and nitrogen recovery efficiency, which can lessen environmental impacts of fertilization. However, these hypotheses have not been fully tested. A 49-site-year study across eight US Midwestern states over three years was conducted to compare near-planting (Single) and split-N (Split) applications. Three N application timings were evaluated [Single near planting, 40... J. Clark, F. Fernandez, J. Camberato, P. Carter, R. Ferguson, D. Franzen, N. Kitchen, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan |
77. Integrating Management Zones and Canopy Sensing for Improved Nitrogen Recommendation AlgorithmsActive crop canopy sensors have been studied as a tool to direct spatially variable nitrogen (N) fertilizer applications in maize, with the goal of increasing the synchrony between N supply and crop demand and thus improving N use efficiency (NUE). However, N recommendation algorithms have often proven inaccurate in certain subfield regions due to local spatial variability. Modifying these algorithms by integrating soil-based management zones (MZ) may improve their accuracy... J. Crowther, J. Parrish, R. Ferguson, J. Luck, K. Glewen, T. Shaver, D. Krull, L. Thompson, N. Mueller, B. Krienke, T. Mieno, T. Ingram |
78. Comparison of Ground-Based Active Crop Canopy Sensor and Aerial Passive Crop Canopy Sensor for In-Season Nitrogen ManagementCrop canopy sensors represent one tool available to help calculate a reactive in-season nitrogen (N) application rate in corn. When utilizing such systems, corn growers must decide between using active versus passive crop canopy sensors. The objectives of this study was to 1) determine the correlation between N management by remote sensing using a passive sensor and N management using proximal sensing with an active sensors. Treatments were arranged as field length strips in a randomized complete... J. Parrish, R. Ferguson, J. Luck, K. Glewen, L. Thompson, B. Krienke, N. Mueller, T. Ingram, D. Krull, J. Crowther, T. Shaver, T. Mieno |
79. Can a Winter Rye Cover Crop Mitigate Nitrate Leaching from Corn Production on Irrigated Coarse Textured Soils?Minnesota has approximately 500,000 acres of irrigated coarse textured soils. These soils are very productive but are highly vulnerable to nitrate (NO --N) leaching and ground water contamination. In these soils, most of the NO --N leaching losses take place in early spring and late fall, when precipitation is high and crops have limited water and nutrient uptake. The objectives of this study are 1) quantify the capacity of rye (Secale cereal L.) as a cover crop to mitigate... N. Ricks, F. Fernandez, J. Baker |
80. Tillage, Crop Rotation, and Cover Crop Impact on Corn Nitrogen Requirements in Southeastern South DakotaNitrogen is the lifeline of corn production. There is uncertainty whether nitrogen (N) requirements are the same for corn raised under long term no-till versus conventional till production systems. The objective of this study was to evaluate N fertilizer requirements for long term no-till soils in southeastern South Dakota, while considering effects from cover crops and crop rotation. This was a two year study at the SDSU Southeast Research Farm near Beresford, SD on long term no-till plots established... S. Berg, P. Sexton, R. Gelderman, A. Bly, C. Derdall |
81. Corn Nitrogen Calibration in South DakotaSouth Dakota (SD) corn nitrogen (N) rate recommendations were last established in 1991 and based on the coefficient of 1.2 lbs N/bu of the yield goal. The South Dakota corn N rate calculator subtracts the pre-plant soil test NO3-N (0-2ft) and legume credits and adds 30 lbs N/a for recently established no-till. Much improved corn genetics, shifting farming practices, and climate changes warrant re-calibration of corn N rate recommendations. During 2013-2105, N rate studies were conducted at 20... A. Bly, S. Berg |
82. The Anaerobic Potentially Mineralizable Nitrogen Test as a Tool for Nitrogen Management in the MidwestThe anaerobic potentially mineralizable nitrogen (PMNan) test is a tool that can improve estimations of mineralizable nitrogen (N) and enhance nitrogen use efficiency. This tool may also help improve predictions of N uptake, grain yield, and the economic optimum nitrogen rate (EONR) of corn (Zea mays L.). A 32 site-year study across eight US Midwestern states was conducted to 1) compare the effect of incubation length (7-, 14-, 28-d), soil sampling timing, N fertilizer rate, and their... J. Clark, K. Sloan veum, F. Fernandez, J. Camberato, P. Carter, R. Ferguson, D. Franzen, N. Kitchen, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan |
83. N-Fertilizer Recovery Efficiency by Corn Using Controlled Release UreaLimited research has been conducted on the use of 15N-labeled controlled release urea fertilizers under field conditions for corn production. The objectives of this study were to: 1) evaluate the fate of N derived from a blend of two enhanced efficiency N fertilizers in corn plants throughout the growing season; and 2) to determine the N recovery efficiency of the two N sources from a blended application. A field study was conducted during the 2015-2016 growing season at Iracemápolis,... H. Gonzalez, D. Ruiz diaz, C. Filho, P. Trivelin |
84. Effects of Applied Soil Micronutrients on Corn and Soybean Yields in Eastern South Dakota EnvironmentsMicronutrients although taken up by plants in small quantities, their deficiencies can have significant detrimental effects on grain yield. As growers aim for maximum corn and soybean yields, availability of micronutrients in agricultural market both as individual source or combined with other secondary nutrients have also increased. However, effects of micronutrients on corn and soybean grain yields are not well documented for South Dakota (SD) soils, and growers seem to be concerned if application... D. Karki, A. Bly, S. Berg |
85. South Dakota Producers Use of Soil Testing to Make Soil Fertility DecisionsSoil fertility guidelines in South Dakota are primarily based on soil testing results. There are several possible soil sampling procedures regarding timing, frequency, and type of soil sampling that can be followed by producers. Survey information collected from South Dakota producers can inform us what soil sampling procedures they are commonly using. We distributed a survey to 3,000 South Dakota producers based on crop reporting district, crops grown, and farm size. We reminded producers three... |
86. Relationship of in-season soil nitrogen concentration with corn yield and potential nitrogen lossesModeled or measured soil mineral N (SMN) levels during the corn growing season have been used to set sidedress N rates, but there has been little research linking SMN levels at different growth stages to yield to help guide this process. The degree to which SMN level influences the risk of N losses is also not known. Data from 32 site-years of field experiments in Illinois (2015–2018) that included 12 combinations of N fertilizer rate, timing, and source, were used to evaluate... G. Preza-fontes, E. Nafziger, L. Christianson, C. Pittelkow |
87. Cover crops nutrients uptake did not cause yield loss in cornBare soils are susceptible to erosion and nutrient loss. Cover crops and residues provide physical protection against erosion and nutrient loss, and improve nutrient cycling as well as biodiversity. We hypothesized that cover crops store available nutrients from the soil in the fall and release them the next spring for the next cash crop, minimizing potential nutrients loss with no adverse effect on cash crop yield. A four site-year study throughout South Dakota was conducted to compare... |
88. Can Cover Crops Help to Improve Soil Health While Having a Positive Effect on Corn Grain Yield?Cover crops have recently gained attention in the U.S. Mid-west because of their potential to increase soil organic matter and improve overall soil health. There is some concern however, that cover crops may negatively impact corn grain yield. This study was conducted to determine the effects that different cover crop mixtures have on soil health measurements and corn grain yield at increasing nitrogen rates. Cover crops were planted in the fall as a dominantly grass mixture, dominantly... |
89. No-till corn nitrogen recommendation using precision soil management practicesIn long-term no-till fields, South Dakota (SD) farmers reported a reduced fertilizer-nitrogen (N) requirement compared to conventional tillage to obtain optimum corn yield. Reduced fertilizer recommendation may be due to improved soil health resulting from increasing soil organic matter, higher soil microbial activities, and improved water and nutrient use efficiency over the years the no-till system is used. However, the impact of soil health measurements on fertilizer-N requirement has not been... D. Bhattarai, J. Clark, D. Clay |
90. CORN YIELD AND NITROGEN USE EFFICIENCY RESPONSE TO WHEAT COVER CROP AND SPLIT NITROGEN APPLICATIONCorn (Zea mays L.) grain is a major commodity crop in Illinois and its production largely relies on timely application of nitrogen (N) fertilizers. Currently, growers in Illinois and other neighboring states in the U.S. Midwest use the maximum return to N (MRTN) decision support system to predict corn N requirements. However, the current tool does not factor in implications of integrating cover crops into the rotation, which has recently gained attention among growers due to several... R. Keshavarz-afshar, E. Jahanzad, M. Battaglia, Y. Luo, A. Sadeghpour, O. Adeyemi |
91. Banding Nitrogen Increases Nutrient Uptake and Yield of CornInadequate nitrogen (N) availability during the start of the corn (Zea mays L.) growing season can reduce the yield potential of the crop. However, the greatest amount of N is required during the period of rapid growth (from 10-leaf stage to tasseling [VT]). Banding N at or near the time of panting increases availability of N to the corn plant and could allow for the reduction in early-season N rates without reducing yield potential. Across the state of Illinois in 2019, urea ammonium nitrate... E.T. Winans, F.E. Below |
92. Precision planting impacts on winter cereal rye growth, nutrient uptake, spring soil temperature, and adoption costGrowing winter cereal rye (Secale cereale) (WCR) has been identified as an effective in-field practice to reduce nitrate-N and phosphorus (P) losses to Upper Mississippi River Basin (UMRB), USA. In the Midwestern USA, growers are reluctant to plant WCR especially prior to corn (Zea mays L.) due to N immobilization and establishment issues. Precision planting of WCR or “Skipping the corn row” (STCR) can minimize some issues associated with WCR ahead of corn while reducing... |
93. Sensor-Based Fertigation Management for Production-Scale ApplicationsFertigation, the practice of applying fertilizer through irrigation water, offers many benefits as an in-season nitrogen application technique for irrigated corn production systems. Most notably, fertigation offers growers the opportunity to make multiple applications throughout the growing season, including late season applications during corn reproductive growth stages. Growers have traditionally determined the timing and number of fertigation applications using visual observations, irrigation... J. Stansell |
94. Corn Nitrogen Fertilizer Management Practices in Eastern South DakotaThe adoption factors of N best management practices (BMPs) that can lessen N loss needs to be understood to help increase adoption rates. Understanding the local, small-scale factors (geographic location, tillage type, and farm size) that influence the use of N BMPs will help nutrient management professionals provide the research and information needed to increase the use of N BMPs. South Dakota (SD) survey data from 465 producers was used to examine the above local, small-scale factors that influence... J.D. Clark, A. Bly, P. Kovacs, J. Ulrich-schad |
95. Soil and Soybean Responses to Planting into Terminated Prairie StripsPrairie strips are a new conservation practice that are currently implemented in 14 Midwest US states. Prairie strips have been shown to reduce runoff, increase soil health, retain sediment and nutrients, increase biodiversity and have no effect on surrounding crop yield. Due to the comprehensive improvements to soil health under prairie strips, researchers and growers are interested in rotating them on 10-15 year cycles. We have little-to-no knowledge on the effects of planting crops in... C. Dutter, M. St cyr, M. Mcdaniel, C. Carley, A. Singh |
96. Site-Specific Yield and Protein Response to Nitrogen Rate and Timing in Winter WheatNitrogen (N) fertilizer management is crucial in cereal crop production. Improved prediction of optimal N fertilizer rates for winter wheat can decrease N losses and enhance profits. We tested seven N fertilizer rates (0, 25, 50, 75, 100, 125, and 150 kg N ha-1) applied at three timings (Fall, Spring, and Split Fall/Spring) in seven small plot trials located in commercial fields... J. Cesario pereira pinto, L. Puntel, L. Thompson, N. Mueller |
97. Impact of Site-Specific Variability on the Effectiveness of Active Canopy Sensors for In-Season N Management in CornIn-season nitrogen (N) management in corn guided by active canopy sensors is often associated with higher yields, profit and nitrogen use efficiency (NUE). However, these benefits could vary from field-to-field and year-to-year. These inconsistent relationships between technology and benefits represent a major challenge for increasing adoption of sensor-based N application in corn. Thus, a better understanding of which site-specific factors determine positive benefits from sensor-based N application... L. Puntel, J. Luck, L. Thompson |
98. Maize Yield Increased by Optimal Timing and Placement of Polymer-coated Nitrogen FertilizerNitrogen (N) fertilizer application timing and placement can manage N availability to improve maize (Zea mays L.) productivity, but polymer-coated N fertilizer offers a different approach to season-long N availability and creates new N management opportunities. The objective of this study was to compare the effectiveness of conventional and polymer-coated N sources across fertilizer timing and placement combinations to optimize maize productivity. Field trials were conducted at three... S. Schwartz, F. Below |
99. Promoting Adoption of Precision Nitrogen Management Technologies Through On-farm ResearchThe Nebraska On-Farm Research Network helps farmers evaluate products and practices that impact the productivity, profitability, and sustainability of their operations. There are many technologies that have potential to increase nitrogen use efficiency (NUE) on corn and winter wheat but typically these technologies have low adoption. At the same time, farmers have technologies such as GPS, yield monitors, and variable-rate application equipment on their farmers that enables them to easily conduct... L. Thompson, L. Puntel, T. Mieno, J. Iqbal, B. Maharjan, J. Luck, S. Norquest, J. Guilherme cesario pereira pinto, C. Uwineza |
100. Benchmarking Nitrogen Recommendation Tools for Nebraska Winter WheatAttaining high yield and high nitrogen (N) use efficiency (NUE) remains a current research challenge in crop production. Digital ag technologies for site-specific N management have been demonstrated to improve NUE. This is due to the ability of digital technologies to account for the spatial and temporal distribution of crop N demand and available soil N in the field, which varies greatly according to soil properties, climate, and management. In addition, winter wheat protein content is highly... J. Cesario pinto, L. Thompson, N. Mueller, T. Mieno, L. Puntel, G. Balboa |
101. What Soil Measurements Relate Best to Corn Economic Optimal N Rate?The use of nitrogen (N) fertilizer is critical for optimizing corn (Zea mays L.) yield. However, improper applications can reduce fertilizer efficiency, create environmental issues, and reduce grower profits. The N cycle is largely affected by biological processes. Therefore, the inclusion of biological soil tests alone or in combination with other soil chemical and physical properties may enable us to improve the accuracy of corn N fertilizer needs to optimize yield. From 2018-2021,... J. Clark, P. Kovacs, A. Bly, A. Ahlersmeyer |
102. Manure Total Nitrogen Variability Due to Analytical Method and Total Solids ContentKnowing the nutrient analysis of a fertilizer source is essential to ensure adequate nutrients for crop growth, while not causing potential environmental impacts by overapplying nutrients. Using manure as a nutrient source can complicate matters as the nutrient content can be variable and the manure can come in a range of liquid to solid consistencies. There are multiple laboratory methods to determine different nutrient parameters and for manure total nitrogen levels the most common methods... N.L. Bohl bormann, M.L. Wilson, E.L. Cortus, J. Floren, R.O. Miller, L. Gunderson |
103. Comparison of Wheat and Barley to Rye As a Cover Crop for MaizeCover crops are used by farmers in Kentucky to prevent soil erosion and uptake residual nitrogen in between growing seasons of cash crops. Cereal rye has become a popular cover crop due to its sizeable biomass production and superior nitrate uptake ability. Wheat and barley have similar fibrous root systems and may have value as a cover crop. A field study was conducted at the University of Kentucky North Farm in Lexington, KY, in 2021 and 2022. The objectives of this study were to determine if... R. Nalley, C. Lee |
104. Carbon Credit and Sequestration in Agroecosystems; Lessons from Trials in Southern IllinoisA carbon (C) credit is the attribution of net CO2-C equivalent which can be used to decrease climate forcing through a given practice or farming system for a given unit time. Carbon credits allow industries to purchase C that is produced on a farm (i.e., offsets). Carbon can be captured in two ways; (i) by capturing and reducing greenhouse gasses (on a CO2-C equivalent basis), and/or (ii) by increasing soil organic C stocks. Therefore, to enable C credits in the agricultural... A. Sadeghpour, A.M. Weidhuner, G. Burkett, O. Zandvakili, O. Adeyemi, C. Kula, J. Berberich, J. Pike, A.J. Margenot |
105. Updating Phosphorus Recommendations for IllinoisIllinois soil phosphorus (P) recommendations are outdated and make use of concepts such as soil P supply power are outdated. This 2022 Illinois State Report provides a summary and outlook on key considerations for P recommendations that may be instructive to other North Central states. ... A. Margenot |
106. A Minnesota-Wide Assessment of Critical Pre-Plant and in-Season Soil Nitrate for Adjusting Nitrogen Rate GuidelinesThe pre-plant (PPNT) and pre-sidedress (PSNT) soil nitrate tests are often used as indicators of soil nitrogen (N) availability in Minnesota. The assessment of available soil nitrogen (N) provides corn (Zea mays L.) growers with key information on N credits to adjust their N fertilizer rates. However, current N management recommendations in Minnesota were based on research conducted 40-yr ago and did not specify differences between environments and management. Through a comprehensive... E. Souza, F.G. Fernandez, J. Coulter, M. Wilson, J.A. Vetsch, P.H. Pagliari, R.T. Venterea, D.E. Kaiser, K.P. Fabrizzi, D. Bernau, C.J. Rosen, K. Mizuta, Y. Miao, V. Sharma |
107. Consideration of Clay Mineralogy for Enhanced Prediction of Optimal Corn Potassium Fertilizer RatesProperly calibrated potassium (K) fertilizer recommendations (KFRs) are critical for improving crop yields and maintaining environmental stewardship. Recent innovations in soil and crop management suggest that certain soil factors, including clay mineralogy, can be used to predict optimal K requirements in corn. The objectives of this study include 1) correlate soil K levels to corn yield, 2) calibrate KFRs with clay mineralogy data, and 3) determine the relationships among clay mineralogy, K... A. Ahlersmeyer, J. Clark, K. Osterloh, D. Clay |
108. Comparing Yield Goal and Maximum Return to N Based Methods in Predicting Corn Economic Optimal Nitrogen RatesThere are two main N rate recommendation systems used in the U.S.–Yield goal and maximum return to N (MRTN). The current yield-goal based system for calculating corn N rate recommendations in SD has not been evaluated for accuracy since 2013. Therefore, the objective of this project was to 1) evaluate the accuracy of the current yield goal-based equation and 2) create a database of N response trials and evaluate the accuracy of using the MRTN approach for predicting N rate requirements.... J. Clark, P. Kovacs, A. Bly, C. Graham |
109. Exploring the Impact of Temporal Variability in Emergence on Corn Grain Yield and Development PatternsConcerns have raised among farmers in the Midwest regarding the impacts of uneven emergence of corn (Zea mays L.) seedlings. Research has showed that even a minor delay in emergence of a few hours could have a substantial influence on plant performance and ear weight; and one of the contributing factors to uneven seedling emergence in corn is the application of starter fertilizer. Placing fertilizers in the seed furrow increases the salt concentration surrounding the seed and as a result, delays... L. Dorissant, P. Kovács, J. Clark |
110. Comparison of Wheat and Barley to Rye as a Cover Crop for CornWinter cereal cover crops have become an essential management practice for sustainable corn production. Rye is the most popular winter cereal for cover crop, but wheat and barley may provide a comparable value due to their similar fibrous root systems. Winter cereals provide organic matter, scavenge residual nutrients, and protect the soil from erosion. Winter cereals can immobilize nutrients for the corn crop and can reduce corn stands in some situations, reducing corn yield. The primary objective... R. Nalley, C. Lee, H. Poffenbarger |
111. Conservation Practices Lower Soil Test Phosphorus Requirements and Optimize Crop YieldSustainable P management in cropping systems is a challenge in modern agriculture. The implementation of conservation practices of no-till, retaining high levels of residue in the field, and diverse crop rotations may create a more suitable environment for arbuscular mycorrhizal fungi (AMF) to accumulate. A greater AMF population may subsequently increase the P available to crops, lowering the soil test P amount needed to optimize crop yield. At the Dakota Lakes Research Farm in Pierre, South... C. Winter, J. Clark, M. Lehman, S. Xu, S. Ireland |
112. Corn Nitrogen Requirement in Winter Cereal Cover Crop Trials in Southern IllinoisWinter cereal cover crops, including wheat (Triticum aestivum L.) and winter rye (Secale cereale L.) are recommended as the best in-field management strategy by the Illinois Nutrient Loss Reduction Strategy (INLRS) to minimize nitrate-N leaching to the Mississippi River Basin and the Gulf of Mexico. We evaluated the effect of wheat and winter rye on corn grain yield, and nitrogen (N) requirement. Treatments were laid out in a randomized complete block design with four replicates... A. Sadeghpour, O. Adeyemi, O. Guzel, C. Kula, J. Mcgrath, G. Sener guzel |
113. Does Sensor-based Nitrogen Management Maintain Crop Production and Decrease Nitrate-N Leaching?To improve water quality, nitrogen (N) management in corn production systems should shift from current N decision support system [maximum return to N (MRTN)] which suggests a single rate N addition to sensor-based (GreenSeeker) active N management (variable N rate approach). Single rate N recommendations often result in under- and over-N addition and either increase environmental N losses or cause corn yield penalty. Our objectives were to evaluate corn optimum nitrogen N requirement (EORN) in... A. Sadeghpour, M. Guzel, J. Mcgrath, O. Adeyemi, B. Arnall, O. Guzel |
114. Does Nitrogen Fertilization with Manure Injection Versus Surface Application Influence Corn for Silage and Winter Rye Yield, Quality, Phosphorus Balance and Soil Test Phosphorus Over Three Years?Switching from nitrogen (N)-based to phosphorus (P)-based manure management has been shown to decrease P loss to the environment allowing for sustainable P management in dairy farms. At high P soils, dairy farmers often surface apply the liquid manure to corn (Zea mays L.) for silage at the P-based rates and supplement the limited N to corn with N fertilizers to ensure optimum crop production. With high fertilizer prices, one solution to reducing the N requirement of corn could be to... A. Sadeghpour, G. Burkett, S. Babaei, O. Adeyemi, K. Vaughn, C. Kula |
115. Can CRP Serve As a Soil Health Benchmark: A Minnesota Case Study Utilizing SMAFSoil health is an important concept relating to sustainable agriculture and food security. However, the absence of a universally accepted benchmark for soil health complicates its application as a tool to measure soil functional capabilities. Here we propose the use of Conservation Reserve Program (CRP) soils as a potential benchmark for soil health in Southern Minnesota. The Soil Management Assessment Framework (SMAF) was used to evaluate soil health indicators and quantify the soil health gap... O. Hoffman, C. Chorpenning, C. Buchanan, T. Trimarco, N. Carr, J. Ippolito |
116. Corn Grain Yield Response to Nitrogen Rate Timing, Source, and Nitrification Inhibitor in MissouriNitrogen response depends on several factors including weather conditions, soil N supply capacity, previous crop in rotation, plant population, and fertilizer management practices. Fertilizer management practices include fertilizer rate, source, application timing, placement, and use of nitrogen stabilizer. In Missouri, the nitrogen fertilizer rate recommendations for corn are based on the yield goal equation. This equation includes the target plant population, pounds of nitrogen removed per thousand... G. Singh , K. Nelson, G. Kaur , J. Lory, M. Davis, L. Abendroth, H. Naumann, J. Calhoun, J. Chlapecka, W. Bradley, C.J. Ransom, R. Carson, P. Pal |
117. Cover Crop Composition: Implications for Crop Yields, Nitrogen Use, and Soil Health in Corn-Soybean RotationsCover crops can improve agricultural sustainability by influencing nitrogen (N) use, enhancing soil health, and optimizing crop yields. However, their effects can vary based on species composition. This study evaluated how different cover crop compositions impact crop yields, N requirements, and soil health in corn-soybean rotations. Field experiments were conducted at Brookings and Beresford, South Dakota. Three cover crops (none, single grass, and multi-species) were interseeded... S. Kodali, J. Clark |
118. County-Level Phosphorus Balances for 2017 in IllinoisCropland phosphorus (P) balances (manure and fertilizer P minus crop P removal) are great sustainability tools to assess long-term managements at farm, county, and state levels. Our objectives were to estimate county, regional, and state-level cropland P balances for Illinois in 2017. Based on the census data in 2017, Illinois county P balance ranged from -14.38 to 36 lb/acre/yr. Overall, Illinois had a negative P balance at about -3 lb/acre/yr. About 71% of counties, had a negative P balance,... X. Liu, S. Xu, A. Margenot, A. Sadeghpour, O. Zandvakili, M. Guzel |
119. Nitrogen Rate and Harvesting Time Based on Growing Degree Days Influenced Winter Cereal Rye Morphological Traits, Forage Yield, Quality, and Farm Profit in Poorly Drained AlfisolsWinter cereal rye (Secale cereale L.) (WCR) is often double cropped with maize for silage (Zea mays L.) to increase farm forage supply and profit. Spring nitrogen (N) fertilization to WCR could influence its production and quality at different harvesting times. Therefore, two on-farm trials were conducted in the 2019-2020 and 2020-2021 growing seasons to evaluate the effect of harvesting time (late-March to end-of-April considering the growth stage) and spring N fertilization... G. Burkett, K. Vaughn, O. Adeyemi, O. Zandvakili, M. Battaglia, S. Babaei, J. Nair, S. Still, A. Sadeghpour |
120. Phosphorus Management in the North Central Region: A Brief History, Current Unknowns and Next StepsThe history of phosphorus (P) reflects the history of agriculture in the North Central region. The yield-limiting importance of P, secondary to nitrogen, was recognized as at the turn of the 19th century. An overview of key developments and unfinished business following the picking of these low hanging fruit in the 20th century that face researchers, agronomists, and producers will be discussed. These include assessing P mobility, P sources from fertilizer versus soil, the concept of... A. Margenot |