Proceedings
Authors
| Filter results4 paper(s) found. |
|---|
1. Relationship Between Soil P and P in Surface Runoff and Subsurface Drainage- An Overview of Ongoing ResearchNonpoint source pollution fiom agricultural fields has the potential to accelerate eutrophication of fieshwater ecosystems. In a report of water quality in the United States, the Environmental Protection Agency sited agriculture as the primary source of pollution in 60% of impaired river miles, 30% of the impaired lake acres and 15% of estuarine square miles @PA, 1998). Phosphorus, in particular, has received much attention due to its role as limiting nutrient in many fieshwater ecosystems (Correll,... |
2. Effect of Biosolids Application On Plant Available NutrientsBiosolids are a by-product of municipal wastewater treatment process which is extensively treated to meet all applicable federal and state regulations so that they can it can be safely applied to land. Approximately, 7.9 million dry metric tons of biosolids are produced annually in the United States (U.S.) and over 55% of this amount is beneficially utilized through land application (NEBRA, 2007). Farmland application of biosolids is considered to be one of the most economical and environmentally... |
3. Slow-Release Fertilizer Effect on Groundwater Nitrogen Concentration in Sandy Soils under Potato ProductionCurrent nitrogen (N) fertilizer management practices for potato farming have led to elevated levels of N in the local groundwater. Slow-release fertilizer, specifically Environmentally Smart Nitrogen® (ESN®) polymer coated urea (PCU ) may reduce the amount of N leaching to groundwater; however no field scale studies have been performed in Wisconsin to validate these assertions. Field experiments were conducted at the Hancock Agricultural Research Station using Russet Burbank potato, planted in... |
4. Can a Winter Rye Cover Crop Mitigate Nitrate Leaching from Corn Production on Irrigated Coarse Textured Soils?Minnesota has approximately 500,000 acres of irrigated coarse textured soils. These soils are very productive but are highly vulnerable to nitrate (NO --N) leaching and ground water contamination. In these soils, most of the NO --N leaching losses take place in early spring and late fall, when precipitation is high and crops have limited water and nutrient uptake. The objectives of this study are 1) quantify the capacity of rye (Secale cereal L.) as a cover crop to mitigate... N. Ricks, F. Fernandez, J. Baker |