Proceedings
Authors
| Filter results7 paper(s) found. |
|---|
1. Assessing the Variability of Corn Response to NitrogenBecause results of experiments designed to test the response of corn to N rate tend to vary considerably with the environment. repetitions of such studies over time are essential. It is not clear, however, what number of repetitions are needed in order to deduce sound recommendations for application of N fertilizer to succeeding crops. We used the results from 16 years of a crop rotation x N rate study conducted at Monmouth, Illinois to assess the effect of duration of such an experiment on the stability... |
2. Corn Nitrogen Response Across Environments and Crop RotationRecent research on corn has tended to show variability in N response. Brown et al. (1993) reported that economically optimal N rates among 77 sites in Illinois ranged from zero to more than 200 lb N per acre. Results from other studies show similar variability in time and space. Even with such variability, results over environments have been combined and used to develop an N fertilizer rate guideline in Illinois based on anticipated corn yield (Hoeft and Peck, 2002). This guideline suggests providing... |
3. Managing Continuous Corn for High YieldsMany "contest-winning" corn yields have historically been produced in fields where corn is grown continuously, often with extensive tillage, hgh soil test values of P and K, high N rates, and high plant populations. We are conducting a series of research trials at four sites in Illinois, in whlch we are varying tillage, fertilizer rates, and plant population in a factorial experiment at several Illinois locations. Over ten site-years to date, tillage deeper than normal increased yield at two site-years.... |
4. Nitrogen Recalibration for Wheat in North DakotaThe general formula for determining N fertilizer ra te in North Dakota for about thirty-five years has been N-rate = (2.5 X Yield Potential (or Yield G oal) less credits from previous crops and soil test nitrate-N from a 2-foot soil core composite. Historically high fertilizer N costs and the ability to fertilize within fiel ds rather than whole field N management has resulted in a reexamination of N calibration data, and an effort to expand the modern N calibration database with new field experiments.... |
5. Nitrogen Recalibration for Wheat in North DakotaThe rise in grain prices and fertilizer costs, as well as the need for more soil-specific recommendations has spurred recent research into N response of wheat in North Dakota. Combining data from 1970 to 1990, together with recent studies has shown that new recommendations are in order. There is a rela tionship of wheat yield to available N. The relationship is better when residual soil nitrate is considered. Different areas of the state partition out with different response curves. Using the 'return... |
6. Nitrogen Recalibration for Spring Wheat and Durum in North DakotaNorth Dakota will begin using new fertilizer r ecommendations beginning Dec. 1, 2009. Previous recommendations required a yield guess by growers with no rega rd to economics of nitrogen application. The new recommendations recogni ze different N response curves with yield and grain protein within three state agri-climatology zones. The reco mmendations use the "return to N" method, which vary the N recommendation based on crop price and N costs. The resulting rate is adjusted based on... D. Franzen, G. Endres, J. Lukach, R. Ashley, J. Staricka, K. Mckay |
7. Recoverable Yield: A New Component for Improving Algorithms Used For Sensor Based Nitrogen Management In WheatIncreased interest in N management over the past decade has stimulated interest in using optical sensors to predict N needs in a number of crops. Many universities have created N recommendation algorithms for winter wheat, with slightly differing approaches. While many university algorithms operate under the assumption that 100% of the yield potential difference between the N rich strip and the farmer practice can be recovered, we believe that this will not always be possible. The objective of this... |