Download the
Conference Proceedings
Proceedings
Authors
| Filter results7 paper(s) found. |
|---|
1. Nitrate Leaching Characteristics for Various Nitrogen Management Strategies on Irrigated CornEfficient use of nitrogen (N) fertilizer for corn production is important for maximizing economic return to the producer and minimizing NO3 leaching to groundwater. This is especially important on irrigated, sandy soils due to the high infiltration and saturated conductivity and potential risk to the local water supplies. This study is being conducted to quantifL the NO3 leaching potential in the irrigated sands along Kansas' waterways under current and alternative N and water management strategies... |
2. Evaluation of the Amino Sugar-N Based Soil test in Iowa Corn ProductionAn important improvement in estimating economic N applications for corn production would be to predict the soil N supply capacity each year. The objective of this research is to evaluate the adaptability and potential calibration of the amino sugar-N based Illinois N Soil Test in corn production fields across diverse Iowa soils. Nitrogen rate trials were conducted at multiple sites over several years, many on producer fields. Soil samples were collected at 0-6 and 0-12 inch depths in the fall and... |
3. Assessing the Benefits of Radish as a Cover CropOilseed radish (Raphanus sativus L) is a popular cover crop for no-till farmers in Wisconsin, especially among those that include winter wheat in rotation since radish can accumulate large amounts of nitrogen (N). However, previously presented research in Wisconsin has not shown a clear N credit for a subsequent corn crop. Additionally, there is a lack of information that quantifies other benefits of radish, including compaction reduction and nematode suppression. The objective of this project was... |
4. Corn Nitrogen Rate Response and Crop Yield in a Rye Cover Crop SystemWater quality impairment related to N loss from crop production fields continues to be a concern in Iowa, including meeting the USEPA nitrate-N drinking water standard and reducing N export to the Gulf of Mexico. Therefore, in-field production practices would be helpful to aid in reduction of nitrate leaching and movement to water systems. One practice identified in the science assessment for the Iowa Nutrient Reduction Strategy is use of a winter cereal rye (Secale cereal L.) cover crop, where a... |
5. Not All Litter is Created Equal: Differences in Nitrogen Mineralization Among Broiler Litter TypesOver three fourths of U.S. broiler chicken production is located in the Southeast and generates a substantial amount of broiler litter (BL). Broiler litter is a mixture of bedding material and manure that can be a valuable nutrient source for row crop production when properly used. New technologies provide farmers with the opportunity to use a combination of BL and inorganic fertilizers with minimal environmental impact. The first part of the project evaluated integrated N management systems that... L. Fitzgerald, E. Ritchey, J. Mcgrath, J. Shockley, H. Poffenbarger |
6. Project Sense: Sensors for the Efficient Use of Nitrogen and Stewardship of the Environment. An On-Farm Research Effort to Increase Adoption of Sensor Based N ManagementLow nitrogen use efficiency (NUE) has been attributed to several factors including asynchrony between nitrogen (N) fertilizer application, crop demand, and spatial variability (Shanahan et al., 2008). Sidedress applied N synchronizes crop uptake demand for N, but does not address the spatial and temporal variability that exists in a field year to year. Active crop canopy sensors provide an ability to monitor and respond to spatial and temporal N variability for a given field. A three-year project,... B. Krienke, R. Ferguson, J. Luck, L. Thompson, J. Parrish, N. Mueller, T. Mieno, J. Crowther, T. Shaver, T. Ingram, D. Krull, K. Glewen |
7. N, S and Micronutrient (B + Zn) Interactions in Soft Red Winter Wheat NutritionThis work is intended to answer certain questions that result from the implementation of a multi-element wheat nutrition program. Nitrogen rate is a fundamental driver of wheat yield and quality. However, the impact/value of S or the micronutrients, which are likely components of a more integrated wheat nutrient management program, is not clear.The main study design included 4 rates of N (40, 80, 120 and 160 lb N/acre), 2 rates of S (0 and 10 lb S/acre), and 2 rates of the micronutrient ‘package’... J. Grove, E. Ritchey, J. Shockley |