Proceedings
Authors
| Filter results15 paper(s) found. |
|---|
1. Grid Sampling- The Worth of InformationSoil sample collection and chemical analysis is a time honored, scientific procedure for providing information used in determining limestone and nutrient needs in crop production fields. Ln fact, without that information one cannot make appropriate limestone and nutrient input decisions. At best they would be educated guesses. and most likely would be incorrect. Inherently then, in the soil testing process is a worth of the information derived. This worth is dependent upon the test results and the... |
2. Spatial Variability of Soil Test Phosphorus, Potassium, pH and Organic Matter ContentAs part of a larger study investigating the potential for variable fertilizer N application in corn production, 18 field sites were established on farms across Ontario intensively sampled in the 1995 and 1996 field seasons to assess the spatial variability of soil test P, K, pH and organic matter content. Soil parameters typically display a log-normal distribution (positive skew) which would generally result in the under-fertilization of a greater area of a field if the rate of fertilization was... |
3. Impact of Liquid Hog Manure and Inorganic Phosphorus (P) Fertilizer Additions on Soil Test P and P Uptake by RyegrassOntario recently introduced a phosphorus (P) index to assess the relative risk of surface water contamination resulting from P application to cropland, and to suggest possible management strategies and application restrictions to reduce this risk. The index incorporates various soiVsite characteristics (soil test P level, erosionlmnoff potential etc.) as well as management practices (rate and method of P application). Within the development of the P index, questions were raised regarding the relative... |
4. Evaluation of the Amino Sugar-N Based Soil test in Iowa Corn ProductionAn important improvement in estimating economic N applications for corn production would be to predict the soil N supply capacity each year. The objective of this research is to evaluate the adaptability and potential calibration of the amino sugar-N based Illinois N Soil Test in corn production fields across diverse Iowa soils. Nitrogen rate trials were conducted at multiple sites over several years, many on producer fields. Soil samples were collected at 0-6 and 0-12 inch depths in the fall and... |
5. Formulating N Recommendations for Corn in the Corn Belt Using Recent DataMaking N rate recommendations for corn has been one of the most econonlically important goals of publicly funded crop production and soil fertility personnel and programs over the past five decades. Changes in cropping systems, hybrids, tillage, and other management practices, along with opportunities in site-specific inputs and awareness of the need to minimize the amount of N that reaches surface and ground waters have combined to increase the interest to re-exanline N rate recommendations, and... |
6. Regional Approach to Making Nitrogen Fertilizer Rate Decisions for CornNitrogen fertilizer is one of the largest input costs for growing corn. Across the Corn Belt, N is typically the most yield-limiting nutrient. Facing record high N fertilizer prices and potential supply problems, producers are concellled about N fertilization rates. Soil fertility researchers and extension specialists froin seven states across the Corn Belt (see list in acknowledgements section) have been discussing corn N fertilization needs and evaluating N rate recommendation systems for approxinlately... |
7. In-Season Nitrogen Management for Corn ProductionWater quality impairment related to nitrogen (N) continues to be a concern in Iowa, including the nitrate drinking water standard, USEPA proposed surface water quality nutrient criteria, and the Gulf of Mexico hypoxia. Addressing these issues could include strict guidance for N input to corn and resultant N use practices that require very high level of management and risk, with unknown economic consequences. Rate of N application is an important ma nagement factor in corn production related to nitrat... |
8. Weed Control Timing Effects on Corn Yield Response to NitrogenNitrogen (N) rate guidelines for corn are under c ontinued scrutiny to maximize N use efficiency in order to minimize potential N losses to th e environment while maximizing economic returns to growers, especially with significant N fertilizer price increases in recent years. In-season crop stress can potentially affect corn N needs for optimum production. Recently, postemergence weed control has become more common with th e availability of glyphosate resistant corn hybrids. Delaying weed control... |
9. Crop Sensor-Based N Rates Out-Performed Producer-Chosen N RatesOptimal N fertilizer rate for corn (Zea mays L.) and other crops can vary substantially within and among fields. Current N management practices do not address this variability. Crop reflectance sensors offer the potential to diagnose crop N need and control N application rates at a fine spatial scale. Our objective was to evaluate the performance of sensor-based variable-rate N applications to corn, relative to constant N rates chosen by the producer. Fifty-five replicated on- farm demonstrations... |
10. Overview of Manure Handling on Steroid Movement in Agricultural Fields from Beef Cattle SystemsManure generated from concentrated animal feeding operations may serve as a source of steroids in surface water and potentially in groundwater. The objectives of this research were to determine the amount of steroids and metabolites in runoff from beef cattle production pens, and from runoff and leaching from crop production fields. Cattle were fed a synthetic progestagen, MGA or melengestrol acetate and treated with zeranol, trenbolone acetate, and estradiol implants, while a second group was not... |
11. Corn Nitrogen Rate Response and Crop Yield in a Rye Cover Crop SystemWater quality impairment related to N loss from crop production fields continues to be a concern in Iowa, including meeting the USEPA nitrate-N drinking water standard and reducing N export to the Gulf of Mexico. Therefore, in-field production practices would be helpful to aid in reduction of nitrate leaching and movement to water systems. One practice identified in the science assessment for the Iowa Nutrient Reduction Strategy is use of a winter cereal rye (Secale cereal L.) cover crop, where a... |
12. iPhone Apps: Corn Nitrogen Fertilizer Rate Calculator and Nitrogen Fertilizer Price Comparison CalculatorAs communications technology advances, there is a need for Extension to deliver information and decision- making tools that leverage these new technologies to engage existing and new clientele groups in new wa ys. Smart technologies allow ac cess to pertinent information on-the- go and out in the field, right when it's needed. ... |
13. Effect of Late-Applied N on Corn Dry Matter, N Content, and YieldNitrogen management of corn (Zea mays L.) may be improved by delaying N application until just prior to the rapid growth phase (approximately V6-V8). This timing is commonly referred to as 'sidedress'.� Some farmers do not sidedress because they are concerned inclement weather may delay N application beyond V8, requiring high clearance equipment to apply N and possibly reducing grain yield. However, few studies have investigated the effects of late-applied N in rain-fed production environments... |
14. Plant Density Consequences on Nitrogen Uptake Dynamics of Maize Plants from Vegetative to Reproductive StagesThere are few studies to date that have inte nsively examined the simultaneous effects of differences in plant crowding and fertilizer N availability for different hybrids and locations on N uptake and maize (Zea mays L.) grain yield. The main research objective was to utilize a quantitative framework to bett er understand the physiological mechanisms that govern N dynamics in maize plants at varying plant densi ties and N rates. Two field experiments involving paired near-isogenic hybrids (i.e.... |
15. Influence of Biological Seed Treatment on Soybean Grain Yield in the U.S.Biological seed treatment in soybean (Glycine max (L.) Merr.) is a growing market in the U.S., with multiple microbially active ingredients and several proposed benefits. Some of the claimed benefits include improving nitrogen fixation, stimulation of root growth, increasing phosphorus, sulfur, and other nutrient absorption, and control of diseases, with the aim to increase soybean grain yield. Farmers are often bombarded with marketing claims about biological seed treatments. In many... F. Colet, R.A. Vann, S.P. Conley, S.L. Naeve, E.G. Matcham, S. Mourtzinis, L.E. Lindsey |