Proceedings
Authors
| Filter results54 paper(s) found. |
|---|
1. Assessing Crop Nitrogen Needs with Chlorophyll MetersTissue testing of corn leaves for nitrogen (N) concentration is not widely used because it is easier and perhaps more economical to apply sufficient fertilizer than to risk a yield reduction because of an N deficiency. Environmental concerns related to N fertilizer will require producers to improve N management practices to reduce the potential for nitrate leaching. Applying fertilizer N on an "As Needed" basis rather than using a "Lump Sum" approach has both environmental and economic implications.... |
2. Nitrogen Management for No-Till Production SystemsNitrogen management practices including rates and sources were evaluated in high residue no-till production systems involving corn and grain sorghum. A urease inhibitor, N-(n-butyl) thiophosphoric triamide (NBPT) was evaluated. This research also assessed the impact of type of previous residue on performance of surface applied N. A chlorophyll meter was evaluated as an in-field N assessment tool. Results to date indicate that NBPT is effective in improving the performance of surface broadcast urea.... |
3. Nitrogen Placement in No-till CornPlacement of nitrogen (N) fartilizers on no-till corn was evaluated in various single and multiple N rate experiments at the Belleville and Carbondale Research Centers of Southern Illinois University from 1983 to 1993. In 15 experiments in which granular urea placement was compared, ear leaf N and grain yield were essentially the same whether urea was broadcast or concentrated in surface bands near corn rows. Only a 2 bu/ac average yield advantage was observed for banding versus broadcasting urea... |
4. Soil Fertility to Ameliorate Plant Stress from Root Feeding InsectsCorn rootworms (Diabrotica spp.) are the most serious insect pests of maize (Zea mays) in the United States. Larval stages ofthese insects feed upon maize root systems causing plant lodging and grain yield reductions. Newly developed area-wide corn rootworm adult suppression methods, which reduce pesticide rates used against this pest complex by greater than 90 percent, do not completely eliminate rootworm populations. If maize producers had the option of using crop production practices that improve... |
5. Improving PSNT Based Sidedress N Recommendations for Corn with Site Specific FactorsThe pre-sidedress soil nitrate test (PSNT) has been found to be a valuable tool for improving nitrogen recommendations for corn grown in humid regions of the country. The PSNT has been especially useful for nunaging N on fmls where organic sources of N, like animal manures are important. This test was proposed by Magdoff et al. in 1984 and has been studied extensively since then (Magdoff et al., 1990; Roth et al., 1992; Fox et al., 1989; Blackmer et al., 1989; Klausner et a]., 1993, and Meisinger... |
6. Starter Fertilizer Interactions with Corn HybridsThe objective of this study was to evaluate the response of corn hybrids grown in a dryland, no-tillage production system on a soil high in available phosphorus to starter fertilizer. Treatments were corn hybrids (5 in 1993 and 6 in 1994) grown with or without starter fertilizer. Starter fertilizer (30 Ib N and 30 Ib P,O,) was applied 2 inches to the side and 2 inches below the seed at planting. Nitrogen was balanced on all plots to give a total of 180 IbIA. Bray-I P level in the experimental area... |
7. Early Season Stresses in CornSpatial variability in corn yield is frequently associated with lost yield potential caused by plant stresses. Early-season stresses are difficult to recognize because growing conditions (soil temperature and water status) are not ideal and seldom uniform throughout a field. The impact that climate has on plant growth is dificult to determine because it also affects nitrogen (N) availability. Nitrogen stress was imposed sequentially until the V8 growth stage and then all plots were sidedressed with... |
8. Effects of Phosphorus Application Method and Rate on Furrow-irrigated Ridge-tilled Grain SorghumThe objective of this research was to investigate the effects of method of phosphorus (P) placement and rate on inigated grain sorghum grown in a ridge-tillage system on a soil low in available P. This experiment was conducted from 1993-1 995 on a producer's field near the North Central Kansas Experiment Field Experiment Field at Scandia, Kansas on a Carr sandy loam soil. Treatments consisted of fertilizer application methods: surface broadcast, single band starter (2 inches to the side and 2 inches... |
9. Strategies for Establishing Management Zones for Site Specific Nutrient ManagementRecent precision agriculture research has focused on the use of management zones as a method to define areas for variable application of crop inputs. The goal of our work was to determine the relative importance of terrain information, aerial photographs, magnetic induction maps, and yield maps to define management zones. This work was conducted on a center-pivot irrigated field located near Gibbon. NE that has been planted to continuous corn for at least five years. Remotely sensed bare-soil images,... |
10. Evaluation of Starter Fertilizer Formulations and Placements for Conservation Tillage Production SystemsWith the interest in and importance of the use of starter fertilizers in conservation tillage production systems, research was continued to evaluate higher rates of N in starter fertilizers and different starter fertilizer placements. The use of starter fertilizer containing N, P and K significantly increased corn yields compared to a N only program, even though soil P and K levels were high. Increasing N rates in direct seed placed starter did not increase yields and significantly reduced plant... |
11. Nitrate Leaching Characteristics for Various Nitrogen Management Strategies on Irrigated CornEfficient use of nitrogen (N) fertilizer for corn production is important for maximizing economic return to the producer and minimizing NO3 leaching to groundwater. This is especially important on irrigated, sandy soils due to the high infiltration and saturated conductivity and potential risk to the local water supplies. This study is being conducted to quantifL the NO3 leaching potential in the irrigated sands along Kansas' waterways under current and alternative N and water management strategies... |
12. Starter Fertilizer Application Effect on Reduced and No-tillage Grain Sorghum ProductionThis experiment was conducted at the North Central Kansas Experiment Field, located near Belleville, on a Crete silt loam soil. Soil test P was in the high@ range. Treatments consisted oftillage systems and starter fertilizer placement and composition. Tillage systems were no-tillage and minimum tillage (spring disc and harrow treatment). Methods of starter fertilizer application included placement 2 inches to the side and 2 inches below the seed at planting (2x2) and dribbled in a band on the soil... |
13. Use of Chlorophyll Flourescence Techniques to Detect Stresses in CornIncreased efficiencies in the use of water and fertilizer will require better methods of monitoring crop stress. This study was conducted to determine whether chlorophyll fluorescence was more sensitive to detecting water and nitrogen stress than chlorophyll meters in corn (Zea mays). The experiment was carried out near Shelton, NE in 2000, 200 1, and 2002. Treatments consisted of a factorial combination of 12 corn hybrids (1 1 Pioneer Hi-Bred internationali and B73 x M017), two water levels (deficit... |
14. Nutrient Management Implications of Relay Cropping on the EnvironmentResidual nitrogen (nitrate-N) remaining in the root zone after seed corn production is frequently greater than under commercial corn production. This nitrate is subject to leaching into the shallow ground water of the Platte River Valley in South-Central Nebraska. as noted by elevated nitrate-N concentrations under seed cornfields compared to other fields. Hard-red winter wheat was planted into seed corn residue in early October of 2001 as a cover crop to scavenge residual- N from the root zone and... |
15. An Update on Crop Canopy Sensors for In-Season N ManagementRemote sensing in agriculture has focused 011 the spectral and spatial properties of plants. Remote sensing provides the capability for rapid collection of vast quantities of spatial data that can be analyzed quickly for use in detel-mining a course of action. This creates the potential for using remote sensing to assess and manage in-season production practices. Past research has shown that a change in canopy rel-lectance inay not be unique for a given stress. Also, other agents may have effects... |
16. Evaluation of Fertilizer Management in Strip-till and No-till Corn ProductionStrip-tillage for corn production may have advantages over no-till. particularly in areas with heavy soils andlor high rainfall during spring months. With these conditions in no-till systems. planting delays and/or slow, uneven emergence are common. Strip-tillage creates a narrow tilled area for the seedbed ivhile maintaining the intcr-row residue cover, allowing for the erosion protection associated with no-till, yet providing an area in the row where the soil will dry out and warm up earlier in... |
17. In Season RecommendationsWe are testing a prototype high-clearance tractor configured with active crop canopy sensors, drop nozzles with electronic valves, and a variable rate controller as means to deliver in-season variable rates of liquid N fertilizer based on crop needs as an alterative to preplant uniform applications of N. The active sensor we're evaluating is the model ACS-210 Crop Circle made by Holland Scientific. It generates it's own source of modulated light in the amber and near infrared (NIR) bands and then... |
18. Strip Tillage and No Tillage Fertilization Systems Evaluated for Eastern Kansas Rain Fed CornRow-crop agriculture in East-Central and Southeast Kansas is facing increasing pressure to reduce sediment and nutrient losses via runoff. Edge-of-field measurements show that no-tillage with fertilizers placed below the surface of the soil has significantly less sediment and total P losses in runoff compared to conventional tillage (Janssen et al., 2000). However, for rain-fed corn, no-tillage in these regions can provide serious challenges some years because of frequent spring rains and an abundance... |
19. Validating the Wisconsin P Index with Measured Runoff P Losses From Agricultural FieldsPhosphorus (P) indices have been developed by most states in the USA for use as planning tools to assess the risk of P loss and identify appropriate management alternatives to control these losses where needed. Little information is available on the relationshp between P index values and actual P runoff losses in the field. We compared annual P losses in runoff measured at 2 1 field or sub-watershed locations with Wisconsin P index values calculated for the same areas. The research sites included... |
20. Zone Delineation for Nitrogen ManagementManaging nitrogen through zone soil sampling has been shown effective in revealing residual soil nitrate patterns in North Dakota. Zone delineation has been constructed using several types of data, including yield maps, remote imagery, topography and soil EC sensor data. A study was conducted in North Dakota, Montana and Minnesota to evaluate zone delineation methods. Across the region, yield frequency maps, topography, remote inlagery and soil EC data were effective in helping to construct zones.... |
21. In-Season Nitrogen Recommendations for CornMaking fertilizer N recommendations involves a great deal of guess work and uncertainty because much, essentially all, of the fertilizer N is applied before the crop is planted and the amount is based on estimated crop use from historical data. In addition, producers, consultants, and fertilizer dealers try to anticipate how much N might be lost because of untimely or excess precipitation or how much additional N might be required if the weather conditions are favorable. Sidedress and in-season... |
22. Silage Specific Corn Hybrids for Silage Production in KentuckyFour corn hybrid types at three plant densities and two nitrogen rates were evaluated for forage yield, forage quality and ensiled quality. The four hybrid types included nutri-dense (ND), waxy (WX), leafy (LF), and dual-purpose (DP); while the three target plant densities were 54 000, 68 000, and 81 000 plants ha; and the nitrogen rates were 134 and 224 kg ha". WX consistently had low forage and grain yields compared with the otl~er types. When averaged over nitrogen rate and hybrid: plant density... |
23. Tillage and Nitrogen Application Methodology Affects Corn Grain YieldMore efficient use of fertilizer nitrogen (N) is essential for improved yields and environmental stewardship. While university N recommendations for corn are based on observations typically made in conventional tillage systems, few universities have established research to evaluate if N recommendations should be different for alternative tillage systems. Generally spealung, no-till or minimum tillage systems have been identified as needing additional N to compensate for microbial immobilization of... |
24. Management of Enhanced EfficiencyFertilizersPhosphorus generally occurs in soils as the anions H 2PO4- or HPO4-2, depending on the soil pH. These anions readily react with soil cations su ch as calcium, magnesium, iron, and aluminum to produce various phosphate compounds of limited wate r solubility. Crop recovery of applied P fertilizer can be quite low during the season of application. Specialty Fertilizer Products 1 has developed and patented a family of dicarboxylic co-polymers that can be used as a coating on granular or mixed into liquid... |
25. Triple-Stacks, Genetics, and Biotechnology in Improving Nitrogen Use of CornGenetic improvement in N use efficiency (NUE) is a clear strategy fo r enhancing yield and fertilizer N management of corn ( Zea mays L.), and has been the subj ect of our ongoing research. Calculation of the N requirement (N fertilizer usage/grain yield) based on statewide average grain yields and fertilizer sales shows a stead y decrease since the mid 1980's, suggestive of a genetic improvement in N use. Direct comparis on of the response to N for a 1980�۪s hybrid with its modern counterpart... |
26. Biomas Removal: Effect on Soil Nutrients and ProductivityInterest in renewable alternatives to fossil energy has increased. There is also a growing awareness of the impact of greenhouse gas emission on global climate change. Crop biomass can be used to make liquid fuels like ethanol. These cellulosic materials are also potential feedstock for controlled combustion substituting fo r natural gas or coal. There are a wide range of potential feedstocks, trees, perennial grasse s and crop non-grain biomass (or residues.). Particularly in the Corn Belt, corn... |
27. Corn and Soybean Response to Starters After Broadcast Fertilizer ApplicationCorn response to fertilization and placement methods has always been a subject of interest and extensive research; however studies on soybean response to placement have been limited in Kansas. The objective of this study was to evaluate the effect of starter and broadcast fertilizer application on corn and soybean in a typical corn-soybean rotation in Kansas. Grain and seed yield, early growth, nutrient concentration and uptake were evaluated over eight site-years trials in Kansas for both corn and... |
28. Corn Hybrids With Contrasting Root Systems: Response To Soil And Fertilizer PhosphorusWith current corn genetic improvements for water-limited scenarios, root system architecture and growth are being considered which may affect overall nutrient uptake particularly for immobile nutrients. The objective of this study was to evaluate plant response and phosphorus uptake with contrasting, generally shallow and generally deep rooted corn hybrids. Over the two years there were a total of seven sites, two sites in 2011 and five sites in 2012. The sites are all rain fed except for three sites... |
29. Crop Sensor-Based N Rates Out-Performed Producer-Chosen N RatesOptimal N fertilizer rate for corn (Zea mays L.) and other crops can vary substantially within and among fields. Current N management practices do not address this variability. Crop reflectance sensors offer the potential to diagnose crop N need and control N application rates at a fine spatial scale. Our objective was to evaluate the performance of sensor-based variable-rate N applications to corn, relative to constant N rates chosen by the producer. Fifty-five replicated on- farm demonstrations... |
30. Evaluation Of Macro and Micronutrients For Double-Crop Soybean After WheatWith double crop soybean production, fertilizer is typically applied prior to planting wheat and intended for both crops; when wheat nutrient removal is higher than expected this may limit nutrient supply for the following soybean crop. The objective of this study was to evaluate the response of soybean grown after wheat to soil-applied and foliar fertilization, including changes in tissue nutrient concentration, and response in grain yield. Four sites were established in 2011 and 2012. All sites... |
31. Nitrogen Loss from Sprinkler Applied Beef Feedlot EffluentLoss of nitrogen from sprinkler applied beef feedlot effluent can be costly for both the producer and the environment. Sprinkler application of effluent is common throughout the Great Plains, though little work has focused specifically on N losses from beef feedlot effluent. We quantified ammonia (NH 3) and nitrous oxide (N2O) losses from beef feedlot effluent applications under field conditions including variations in soil pH, soil water content, ammonium (NH 4+) concentration of the effluent, and... |
32. The Use of Organic Soil Amendments for Winter Wheat Production in KentuckyMost animal manures are land-applied in the fall and spring after crops have been harvested or prior to planting. Surface application of manures in the fall have more potential for nitrogen (N) loss when applied to fallow land compared to land cropped to winter wheat. This study was conducted to determine the N availability of fall applied organic fertilizers and resulting wheat grain yields compared to urea-N fertilizer. The effects of three organic fertilizer sources and rate on wheat yield and... |
33. Soybean Response to Sulfur Placement and Starter Fertilizer ApplicationReduced rates of early season nutrient mineralization from earlier planting dates, increased nutrient removal from greater yields, and reductions in atmospheric sulfur (S) deposition have increased concern regarding S availability for optimal soybean (Glycine max L.) growth. A field study was established to determine the effects of 25 lbs. S per acre with or without starter fertilizer consisting of 20 lbs. nitrogen (N) per acre and 50 lbs. P2O5 per acre on soybean grain yield and quality. Main plots... |
34. Roto and Shoot Biomass and Nutrient Composition in a Winter Rye Cover CropNitrogen loss from applied fertilizer can be a significant environmental quality issue if NO 3 moves to surface or ground water. The Iowa nutrient reduction strategy science assessment identified winter cereal rye (Secale cereal L.) cover crop as a practice that can significantly reduce N and P loss (41% NO 3-N and 21% P reduction) from corn (Zea mays L.) and soybean [Glycine max. (L.) Merr.] fields. Cereal rye, when used as a cover crop, through its fibrous root system is able to explore the soil... |
35. Nitrogen Contribution from Different Manure SourcesNitrogen fertilizer equivalencies (NFE) from manure are influenced by manure type, application method, crop selection, and environmental conditions. Much of the research to determine NFE of manure was conducted in tilled systems but many producers use no-tillage (NT) to reduce soil erosion and labor requirements. The objective of this study was to determine NFE for different manure types used in corn (Zea mays L.) cropping systems. Manures consisted of composted swine manure (CSM), poultry litter... |
36. Relationship between Nitrogen Rate and Weed Removal Timing on Corn YieldWeeds actively compete for nitrogen in corn grain production systems. Field studies were conducted in 2009 and 2010 at the Michigan State University Crop and Soil s Research Farm in East Lansing , MI to evaluate the effect of N application rate and weed removal timing on grain yield . Treatments included four preplant incorporated rates of urea (0, 67, 134, and 202 kg N ha - 1 ) and four weed removal timings (5, 10, 15, and 20 cm) based on average weed canopy height. An additional season- long weed-free... |
37. Micronutrients as Starter and Foliar Application for Corn and SoybeanCorn and soybean production under high yield environments can benefit from the combined use of starter and foliar fertilization, including macro and micronutrients. The objective of this study was to evaluate corn and soybean response to starter fertilizers in combination with foliar application of macro and micronutrients to maximize yield s. Experiments were conducted in 2010 and 2011 at two locations for corn and soybean under irrigation. Starter and foliar fertilizer treatments were applied in... |
38. Nitrogen benefits when interseeding red clover into continuous cornInformation pertaining to the benefits of intereseeding cover crops is lacking. Red clover is a leguminous cover crop that can grow in low radiation environments, is winter hardy for much of the northern USA, and is a low cost weed suppressant that has been shown to provide a nitrogen credit and improve corn yield. While it is clear that red clover is a cover crop that can provide immediate economic benefits in grain-based cropping systems, the potential N credit and the effect of interseeding... H. Francis, M. Ruark, C. Zegler, D. Smith, J. West |
39. Soil N2O emissions in continuous corn as affected by 4R and cover cropsCover crops and 4R nitrogen (N) management are promoted as key practices for reducing nitrate leaching losses, but their impacts on nitrous oxide (N2O) emissions remain less certain. This study evaluated soil N2O emissions and grain yield under different timing of N application and cover crops for two years in a tile-drained continuous corn system. Treatments were 224 kg N ha-1 split-applied in fall + pre-plant (Conventional), pre-plant + side-dress (4R), 4R +... G. Preza fontes, L.E. Christianson, C.M. Pittelkow |
40. Understanding Spatial Variability in Cover Crop Growth and DecompositionIn many agricultural landscapes, topographic variability leads to downslope movement of soil, water, and nutrients, causing heterogeneity in both crop yield and soil fertility throughout production fields. Cover crops can slow these processes, but the impact of topography on cover crop growth and residue persistence is uncertain. We measured the growth, mixture biomass composition, and decomposition of a cereal rye (Secale cereale L.) cover crop, and cereal rye /crimson clover (Trifolium... S.J. Leuthold, M. Salmeron, O. Wendroth, E. Haramoto, H. Poffenbarger |
41. Soil Phosphorus Fractions and Legacy after Long-term Fertilizer Placement in a Corn-Soybean RotationPhosphorus (P) fertilizer placement can affect plant P uptake during the growing season, however, the long-term interaction of placement and plant root P uptake can also affect soil P pools. The objective of this study was to evaluate the influence of long-term P fertilizer placement on soil P pools (labile, moderately labile and non-labile) and legacy soil P accumulation under a corn (Zea mays) -soybean (Glycine max (L.) Merr.) rotation. A field study was conducted for ten years from 2006-... M. Coelho, D. Ruiz diaz, G. Hettiarachchi, F. Hansel |
42. Sulfur Fertility for Kentucky Agriculture: An UpdateSulfur (S) is an essential secondary nutrient for plant growth and is involved with the synthesis of chlorophyll, hormones, and a structural component of proteins. The need for supplemental S fertilizer in Kentucky has been questioned for many years due to lower atmospheric S deposition, fewer fertilizer impurities, soil test laboratory recommendations, and greater crop yields, but field research has not supported this concern. Recent tissue surveys in wheat and alfalfa across Kentucky... E. Ritchey, J. Gray |
43. Nitrogen and Potassium Interactions in CornExtensive research in the North Central region has investigated separately nitrogen (N) and potassium (K) fertilizer management for corn. However, there is scarce information available about how N and K interactions affect corn grain yield and nutrient uptake. The objective of this study was to evaluate the effects of various combinations of N and K rates on corn yield, N and K tissue concentrations, and N and K removed with grain harvest. Two trials with continuous corn were conducted from 2013... J. Hirniak, A. Mallarino |
44. An Integrated Approach to Understanding Poultry Litter Use in Corn-Soybean Production SystemsThe majority of poultry litter (PL) in Kentucky is generated in the western third of the state, the same area that produces approximately 80% of corn, soybean, and wheat. This PL is applied to row crop fields as a nutrient source. Producers and commodity board representatives were concerned with reported nutrient availability coefficients, nutrient value, and long-term use of PL. Four field sites in a NT corn-soybean rotation were identified in the fall of 2012 with low to medium soil test values... E. Ritchey, E. Haramoto, C. Bradley |
45. Topsoil Thickness Effects on Phosphorus and Potassium Dynamics on Claypan SoilsDue to variable depth to claypan (DTC) across landscapes, nutrient supply from subsoils, and crop removal, precise P and K fertilizer management on claypan soil fields can be difficult. Therefore, a study was performed to determine if DTC derived from soil apparent electrical conductivity (ECa) could be used to improve P and K management for corn (Zea mays L.) and soybean (Glycine max [L.]). Research was conducted on a claypan soil at the University of Missouri’s... L. Conway, M. Yost, N. Kitchen, N. Kitchen, K. Sudduth |
46. Phosphorus Distribution After Long-Term P Fertilizer Placement Under Strip-TillageLong-term phosphorus fertilizer placement under strip-tillage tillage can affect the vertical and horizontal distribution of soil test P (STP). The objective of this study was to evaluate the effect of P fertilizer placement on STP distribution under strip-till. A study was established in Scandia, Kansas in 2006 under a corn- soybean rotation. Treatments included a (1) control (No P); and P applied at 80 lb P2O5 ac-1 as (2) broadcast, (3) deep band, (4) broadcast with starter 2x2, and... C. Edwards, D. Ruiz diaz |
47. N-Fertilizer Recovery Efficiency by Corn Using Controlled Release UreaLimited research has been conducted on the use of 15N-labeled controlled release urea fertilizers under field conditions for corn production. The objectives of this study were to: 1) evaluate the fate of N derived from a blend of two enhanced efficiency N fertilizers in corn plants throughout the growing season; and 2) to determine the N recovery efficiency of the two N sources from a blended application. A field study was conducted during the 2015-2016 growing season at Iracemápolis,... H. Gonzalez, D. Ruiz diaz, C. Filho, P. Trivelin |
48. Soybean Yield Response to P Fertilizer Placement as Affected by Soil Parameters: A ReviewIn the last decades, several studies were conducted to evaluate more efficient P fertilizer management with emphasis on placement. Many of these studies report contrasting results, suggesting that a general recommendation may not be appropriate and specific factors of soils, crops, and weather should be considered. A literature search was completed using Google Scholar, and published papers that met our selection criteria included 62 experiments, with 95 site-years. Approximately 9.8% of the studies... F. Hansel, D. Ruiz diaz, L. Rosso |
49. Evaluation of soybean response to in-season potassium fertilizationIn-season application of potassium (K) fertilizer may offer an alternative to remediate deficiencies developed during the growing season. The objective of this study was to determine soybean (Glycine max) response to topdress K application timing under deficient soil conditions. Treatments included a control (0 lbs K2O acre-1), 50 lbs K2O acre-1 pre-plant incorporated, and 50 lbs K2O acre-1 in-season broadcasted at the... D.A. Charbonnier, D.A. Ruiz diaz, M.A. Coelho |
50. Some Thoughts on Nutrient Mineralization and Cycling in No-Till SystemsHigh post-harvest residue accumulations (10+ tons/acre) often occur in crop sequences involving high yielding corn, spring wheat and soybean. Over the last decade, we have conducted several studies that show that N or P availability may be suppressed either through slow residue decomposition, slow mineralization or immobilization. Although several states provide fertilizer recommendation adjustments for no-till and for high residue accumulations, the recommendations are sometimes contradictory.... L. Cihacek, R. Alghamdi |
51. Revamping Nitrogen Fertilizer Recommendations for MissouriMultiple nitrogen fertilizer rate decision tools have been developed over the years for recommending nitrogen to growers. These tools are based on mass balance equations with expected yield and yield goal, economically optimum nitrogen rate, preplant soil nitrate test, pre-sidedress and late spring soil nitrate test, plant tissue nitrogen, crop growth models, and canopy reflectance sensing. These tools rarely include biological nitrogen in the rate recommendations. Advances in soil health assessment... G. Singh , J.A. Lory, K.A. Nelson, M. Davis, L. Abendroth, G. Kaur, J. Calhoun, J. Chlapecka |
52. Corn Response to Nitrogen Fixation Technology in Upstate MissouriNitrogen is one of the most expensive corn input costs and is critical for grain production. Nitrogen (N) fixing bacteria convert atmospheric N into organic forms that can be utilized by the plant are common with legumes. The symbiosis between Rhizobia and legumes is a critical plant–microbe mutualism that is essential for high yielding soybean. Recently, an emphasis on developing technology to supply corn with additional N through biological processes has been a focus of several agribusinesses... D.J. Steinkamp, K.A. Nelson, G. Singh, G. Kaur, H. Kaur |
53. Water Use Efficiency and Soil Changes After Long-term Crop Rotation Under Limited IrrigationLong-term crop rotation intensity and diversity can affect key soil properties. In semi-arid regions, the combined factors of rotation and soil properties may also affect the overall water use efficiency from either limited irrigation or rainfall. The objective of this study was to evaluate changes in soil properties, and water use efficiency of corn grown under different rotation intensity and diversity and limited/supplemental irrigation. A field experiment was conducted over seven years in... P. Garcia, D. Ruiz diaz, B. Olson, A. Tonon rosa, K. Roozeboom |
54. Corn Grain Yield Response to Nitrogen Rate Timing, Source, and Nitrification Inhibitor in MissouriNitrogen response depends on several factors including weather conditions, soil N supply capacity, previous crop in rotation, plant population, and fertilizer management practices. Fertilizer management practices include fertilizer rate, source, application timing, placement, and use of nitrogen stabilizer. In Missouri, the nitrogen fertilizer rate recommendations for corn are based on the yield goal equation. This equation includes the target plant population, pounds of nitrogen removed per thousand... G. Singh , K. Nelson, G. Kaur , J. Lory, M. Davis, L. Abendroth, H. Naumann, J. Calhoun, J. Chlapecka, W. Bradley, C.J. Ransom, R. Carson, P. Pal |